Inducing Plastid Terminal Oxidase for Photoprotection

诱导质体末端氧化酶进行光保护

基本信息

  • 批准号:
    BB/X006905/1
  • 负责人:
  • 金额:
    $ 73.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Food security is one of the greatest challenges facing humanity. Growing populations and changing diets are increasing food demand at a time when human-induced climate change is making weather less predictable, threatening crop production. Episodes of drought, flooding, high and low temperatures, even for relatively short periods, can all undermine final crop yields. Against this background, there is an urgent need to breed crops which combine high productivity with the ability to tolerate environmental stress.One of the main primary targets of environmental stress is photosynthesis. Photosynthesis is the process by which plants capture light energy and use that energy to fix carbon dioxide from the air, producing sugars. Photosynthesis is the ultimate source of all the food we eat. When plants are stressed, imbalances can occur between the amount of energy a leaf absorbs and the amount that can be used in photosynthesis. When this happens, the excess energy can result in the production of harmful molecules called reactive oxygen species (ROS; including for example the bleach, hydrogen peroxide). These ROS can damage the cell, destroying membranes, proteins and DNA.AAcross the plant kingdom we see a range of mechanisms that help protect plants from ROS. Plants contain high concentrations of antioxidants, such as Vitamins A and E, which are essential components of the human diet. They also possess regulatory mechanisms that prevent ROS production. One example, so far only seen naturally in a handful of extreme stress tolerant plants, is called the Plastid Terminal Oxidase, or PTOX. In stress tolerant plants, such as the cabbage relative salt cress (Eutrema salsugineum, in the brassica family), PTOX acts as a safety valve for photosynthesis, dissipating excess energy harmlessly as water, avoiding ROS production. PTOX has not however been seen in common crop species. Previous attempts to use genetic modification to induce PTOX in other species have not only failed, they have made matters worse, increasing rather than preventing stress.In a recent breakthrough, we have shown it is possible to induce activity of PTOX in a new species, by targeting the protein to a particular cellular compartment called the thylakoid lumen. Lumen-targeted PTOX is not constitutively active, but becomes active under stress conditions. We have shown that this activity, seen previously in salt cress, can be transfered to another brassica species, thale cress. In this grant, we will examine the factors that are necessary for the stress-induced activation of lumen-targeted PTOX. We will also attempt, using the same approach, to induce PTOX in important crop species - oilseed rape (another brassica), soybean (a legume) and wheat and barley (grasses). If successful, this approach will pave the way to generate crop plants with improved stress tolerance, increasing crop yields under extreme environmental conditions.
粮食安全是人类面临的最大挑战之一。人口增长和饮食变化正在增加粮食需求,而人类引起的气候变化正在使天气变得更不可预测,威胁到作物生产。干旱、洪水、高温和低温的发生,即使是相对较短的时间,都可能损害最终作物的产量。在这种背景下,迫切需要培育出兼具高生产力和耐受环境胁迫能力的联合收割机,光合作用是环境胁迫的主要目标之一。光合作用是植物捕获光能并利用该能量固定空气中的二氧化碳,产生糖的过程。光合作用是我们吃的所有食物的最终来源。当植物受到压力时,叶子吸收的能量和光合作用中可以使用的能量之间可能会出现不平衡。当这种情况发生时,多余的能量会导致产生称为活性氧(ROS;包括例如漂白剂,过氧化氢)的有害分子。这些活性氧可以破坏细胞,破坏细胞膜,蛋白质和DNA。在整个植物王国,我们看到一系列的机制,帮助保护植物免受活性氧。植物含有高浓度的抗氧化剂,如维生素A和E,这是人类饮食的重要组成部分。它们还具有防止ROS产生的调节机制。一个例子,到目前为止,只在少数极端压力耐受植物中自然发现,被称为质体末端氧化酶,或PTOX。在胁迫耐受植物中,例如甘蓝类盐芥(Eutrema salsugineum,芸苔科),PTOX充当光合作用的安全阀,以水的形式无害地耗散多余的能量,避免ROS产生。然而,在普通作物物种中还没有发现PTOX。以前尝试使用基因改造来诱导其他物种的PTOX不仅失败了,他们使事情变得更糟,增加而不是防止压力。在最近的一项突破中,我们已经表明,通过将蛋白质靶向称为类囊体腔的特定细胞区室,可以在新物种中诱导PTOX活性。管腔靶向PTOX不是组成型活性的,但在应激条件下变得有活性。我们已经证明,这种活性,以前看到在盐水芹,可以转移到另一个芸苔属物种,塔勒水芹。在本研究中,我们将研究应激诱导的靶向PTOX激活所必需的因素。我们还将尝试使用相同的方法,在重要的作物物种中诱导PTOX-油菜(另一种芸苔属),大豆(一种豆类)和小麦和大麦(草)。如果成功的话,这种方法将为培育具有更好的抗逆性的作物铺平道路,从而在极端环境条件下提高作物产量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giles Johnson其他文献

Giles Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giles Johnson', 18)}}的其他基金

Plastid terminal oxidase - a route to improving food security
质体末端氧化酶——改善食品安全的途径
  • 批准号:
    BB/S009078/1
  • 财政年份:
    2019
  • 资助金额:
    $ 73.57万
  • 项目类别:
    Research Grant
Enhancing leaf transient carbon stores - role of fumarate as a possible storage compound
增强叶片瞬时碳储存——富马酸盐作为可能的储存化合物的作用
  • 批准号:
    BB/J004103/1
  • 财政年份:
    2012
  • 资助金额:
    $ 73.57万
  • 项目类别:
    Research Grant

相似海外基金

Inducing Plastid Terminal Oxidase for Photoprotection
诱导质体末端氧化酶进行光保护
  • 批准号:
    BB/X007235/1
  • 财政年份:
    2023
  • 资助金额:
    $ 73.57万
  • 项目类别:
    Research Grant
Exploring new functions of plastid-localized thioredoxin-like proteins
探索质体定位的硫氧还蛋白样蛋白的新功能
  • 批准号:
    23KJ0887
  • 财政年份:
    2023
  • 资助金额:
    $ 73.57万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
TRTech-PGR: Agrobacterium-mediated transformation of the plastid genome
TRTech-PGR:农杆菌介导的质体基因组转化
  • 批准号:
    2224861
  • 财政年份:
    2022
  • 资助金额:
    $ 73.57万
  • 项目类别:
    Standard Grant
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10321648
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
Regulation of Flavonoid Biosynthesis by Plastid-derived Signals (C06)
质体来源信号对类黄酮生物合成的调节 (C06)
  • 批准号:
    445131085
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
    CRC/Transregios
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10534736
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
Investigating the mechanism of plastid division in higher plants
研究高等植物质体分裂的机制
  • 批准号:
    551424-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
    University Undergraduate Student Research Awards
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    9886122
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10580265
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10375791
  • 财政年份:
    2020
  • 资助金额:
    $ 73.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了