Determining the role of defence systems in the evolution of the Azospirillum-wheat mutualism to enhance crop yields for sustainable agriculture

确定防御系统在固氮螺菌-小麦互利共生进化中的作用,以提高可持续农业的作物产量

基本信息

  • 批准号:
    BB/X010600/1
  • 负责人:
  • 金额:
    $ 47.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Food producers face the global challenge of sustainably enhancing agricultural production. Increased production of nutrient dense crops is needed to feed the growing global population. However, chemical inputs must be reduced, and valuable resources, such as water, must be better managed to minimise adverse environmental impacts, including climate pollution, while restoring soil fertility. Microbes in the soil are essential for soil health and function. Plant growth promoting rhizobia (PGPR) grow in the rhizosphere and make nutrients available for plants, and produce molecules that stimulate root development, to enhance growth and resilience. In return, plants secrete molecules through their roots that are used by bacteria, hence forming a mutualistic relationship. The ubiquitous PGPR, Azospirillum, adapted to plant association by acquiring traits from soil microbes on mobile genetic elements (MGEs), which are pieces of DNA that move horizontally between bacteria. MGE acquisition can accelerate bacterial evolution, but they can also be costly to the host, so bacteria carry defence systems to limit MGE uptake. Azospirillum strains vary in the number and type of defence systems, but the role of defences in azospirilla genome evolution and crucially, how they affect plant growth promotion, has not been studied. My proposed research will use bioinformatics, molecular biology and plant experiments to determine how bacterial defence systems affect Azospirillum genome evolution. Since wheat is an important crop in the UK, I will isolate azospirilla from the rhizosphere of wheat grown in diverse UK soils. I will sequence the genomes and use bioinformatics pipelines and dedicated predictor tools to assess the abundance and diversity of MGEs present in my isolates and other related Azospirillum. To predict how defence systems may influence MGE uptake, I will quantify the number and types of defences present and perform statistical modelling to test for associations between defence system and MGE abundance. Systems associated with low MGE loads will be experimentally tested by creating mutants lacking the systems and I will perform infection assays using diverse MGEs and a range of delivery mechanisms to understand which types of MGEs are restricted by each system. It is not clear whether defences, by limiting MGE uptake, constrain the evolutionary potential of the host, or protect the genome against costly elements. To gain insight into the role systems play in azospirilla, and crucially, how the defence-MGE dynamics affect the plant growth promotion, I will perform in vitro assays for plant associated traits and plant growth experiments. I will compare the performance of the defence system knockout mutants, mutants that have acquired new MGEs and the ancestral strain. From these experiments, I will have a greater understanding of how defences shape azospirilla evolution.The proposed project will be carried out at the University of Exeter, where I will work with world-leading experts in microbial evolution, ecology and soil microbiology. Excellent mentorship, and valuable training in scientific skills and leadership, will ensure my success throughout the Fellowship and enable me to launch my independent research career. I will work with three project partners to ensure excellence in all aspects of this interdisciplinary project, including Mauchline, an expert in the wheat rhizosphere and the soil microbiome, Wisniewski-Dyé, who has vast experience in azospirilla manipulation and genomics, and Syngenta, who will perform further analysis and development of beneficial strains. Ending global hunger using sustainable agriculture is a major goal of the UN and the proposed project, to characterise azospirilla to be used for wheat growth promotion, will be a valuable contribution. Further, harnessing the soil microbiome will be a critical component of improving the success of crops, while protecting the environment for future generations.
粮食生产者面临着可持续提高农业生产的全球挑战。为了养活不断增长的全球人口,需要增加营养密集型作物的产量。然而,必须减少化学投入,必须更好地管理水等宝贵资源,以最大限度地减少对环境的不利影响,包括气候污染,同时恢复土壤肥力。土壤中的微生物对土壤的健康和功能至关重要。植物生长促进根瘤菌(PGPR)生长在根际,为植物提供养分,并产生刺激根发育的分子,以促进生长和恢复能力。反过来,植物通过它们的根部分泌供细菌使用的分子,从而形成一种互惠互利的关系。无处不在的PGPR,固氮螺菌,通过从土壤微生物那里获得移动遗传元件(MGES)上的特征来适应植物联想,MGES是在细菌之间水平移动的DNA片段。MGE的获得可以加速细菌的进化,但它们对宿主来说也可能是昂贵的,因此细菌携带防御系统来限制MGE的摄取。固氮螺菌菌株的防御系统的数量和类型各不相同,但防御系统在固氮螺菌基因组进化中的作用以及它们如何影响植物的生长促进还没有被研究过。我提议的研究将使用生物信息学、分子生物学和植物实验来确定细菌防御系统如何影响固氮螺菌基因组进化。由于小麦在英国是一种重要的农作物,我将从种植在英国不同土壤中的小麦根际中分离出固氮螺菌。我将对基因组进行测序,并使用生物信息学管道和专用预测工具来评估我的分离株和其他相关固氮螺菌中存在的MGES的丰度和多样性。为了预测防御系统可能如何影响MGE的摄取,我将量化现有防御系统的数量和类型,并进行统计建模,以测试防御系统和MGE丰度之间的关联。与低MGE负荷相关的系统将通过创建缺乏该系统的突变体进行实验测试,我将使用不同的MGES和一系列传递机制进行感染分析,以了解每个系统限制了哪些类型的MGE。目前尚不清楚的是,通过限制MGE的摄取,防御是限制了宿主的进化潜力,还是保护了基因组免受昂贵因素的影响。为了深入了解系统在固氮螺藻中所起的作用,以及至关重要的是,防御-MGE动态如何影响植物生长促进,我将进行植物相关性状的体外分析和植物生长实验。我将比较防御系统基因敲除突变体、获得新MGES的突变体和祖先菌株的性能。通过这些实验,我将更好地了解防御系统如何塑造固氮螺菌的进化。拟议的项目将在埃克塞特大学进行,在那里我将与微生物进化、生态学和土壤微生物学方面的世界领先专家合作。优秀的指导,以及宝贵的科学技能和领导力培训,将确保我在整个奖学金计划中取得成功,并使我能够开始我的独立研究生涯。我将与三个项目合作伙伴合作,以确保这一跨学科项目在所有方面的卓越表现,其中包括小麦根际和土壤微生物组专家Mauchline,在固氮螺菌操纵和基因组学方面拥有丰富经验的Wisniewski-Dyé,以及将对有益菌株进行进一步分析和开发的先正达。利用可持续农业消除全球饥饿是联合国的一个主要目标,拟议的项目将是一个有价值的贡献,该项目将描述用于促进小麦生长的固氮螺属植物。此外,利用土壤微生物群将是提高作物成功的关键组成部分,同时为子孙后代保护环境。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transient eco-evolutionary dynamics early in a phage epidemic have strong and lasting impact on the long-term evolution of bacterial defences.
  • DOI:
    10.1371/journal.pbio.3002122
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
  • 通讯作者:
CRISPR-Cas in Pseudomonas aeruginosa provides transient population-level immunity against high phage exposures
  • DOI:
    10.1093/ismejo/wrad039
  • 发表时间:
    2024-01-08
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Watson,Bridget N. J.;Capria,Loris;Meaden,Sean
  • 通讯作者:
    Meaden,Sean
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bridget Watson其他文献

Bridget Watson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

BREX phage defence: expanding the role of cyclic nucleotide signalling in the prokaryotic immune system
BREX噬菌体防御:扩大环核苷酸信号在原核免疫系统中的作用
  • 批准号:
    BB/Y003659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Research Grant
The role of NOX4 in muscle antioxidant defence and mitochondrial biogenesis
NOX4 在肌肉抗氧化防御和线粒体生物发生中的作用
  • 批准号:
    nhmrc : GNT1162798
  • 财政年份:
    2019
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Project Grants
DER VERTEIDIGER: A COMPARATIVE STUDY OF THE CONSTRUCTION OF THE ROLE OF THE DEFENCE IN ENGLAND AND WALES AND GERMANY
DER VERTEIDIGER:英格兰、威尔士和德国国防角色构建的比较研究
  • 批准号:
    2282124
  • 财政年份:
    2019
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Studentship
The role of the Rab32/BLOC3 host defence pathway in controlling Staphylococcus aureus infections
Rab32/BLOC3宿主防御途径在控制金黄色葡萄球菌感染中的作用
  • 批准号:
    2282299
  • 财政年份:
    2019
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Studentship
Dissecting the role of RNA in host defence and immune-subversion by SARS-CoV-2 (C10*)
剖析 RNA 在 SARS-CoV-2 (C10*) 宿主防御和免疫颠覆中的作用
  • 批准号:
    405490340
  • 财政年份:
    2018
  • 资助金额:
    $ 47.95万
  • 项目类别:
    CRC/Transregios
IMPC: Role of ifit2 and stat2 in innate immune defence against arbovirus infection at mosquito bites
IMPC:ifit2 和 stat2 在抵抗蚊虫叮咬虫媒病毒感染的先天免疫防御中的作用
  • 批准号:
    MR/R014574/1
  • 财政年份:
    2018
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Research Grant
Defining the mechanisms of mucosal defence against gastrointestinal nematodes: the role of the mucus barrier
定义粘膜防御胃肠道线虫的机制:粘液屏障的作用
  • 批准号:
    1618838
  • 财政年份:
    2015
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Studentship
The role of chromatin extracellular traps in host defence of fish against pathogens.
染色质细胞外陷阱在鱼类宿主防御病原体中的作用。
  • 批准号:
    BB/M026132/1
  • 财政年份:
    2015
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Research Grant
Understanding the role of Sirtuin1 in cell autonomous defence against intracellular pathogens (31*)
了解 Sirtuin1 在细胞自主防御细胞内病原体中的作用 (31*)
  • 批准号:
    259354837
  • 财政年份:
    2014
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Collaborative Research Centres
ROLE OF RIP KINASES & IAPs IN MUCOSAL IMMUNE DEFENCE
RIP 激酶的作用
  • 批准号:
    nhmrc : 1057888
  • 财政年份:
    2014
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了