How do Fbxo7 and PI31 control sperm morphogenesis and male fertility?

Fbxo7 和 PI31 如何控制精子形态发生和男性生育能力?

基本信息

  • 批准号:
    BB/X014177/1
  • 负责人:
  • 金额:
    $ 69.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Sperm cells are the smallest cells in the body, having shed virtually all of their cellular contents in order to swim faster. The production of mature sperm thus involves perhaps the most radical changes in cellular shape in all of mammalian biology. As sperm cells develop, they are dragged into deep indentations ("crypts") within nurse cells (Sertoli cells) that support and sculpt them. Therein, developing sperm cells make ready their cytoplasm for elimination, and package it up for disposal by the Sertoli cells. As the sperm realise their final shape, they are pushed back out of the crypts, and finally released as free-living, mature sperm cells. As yet, little is understood about the processes that coordinate this transformation and control how each cell is moulded into its final shape. We recently discovered that a protein called Fbxo7 is critical for sperm remodelling at a precise time in the process of assuming this streamlined shape. In male mice that lack Fbxo7, sperm cells develop normally up to the point where they enter the crypts - however the cells never leave the crypts and instead all die at once. This shows that Fbxo7 is necessary for the cellular remodelling steps to make a sperm. We know that Fbxo7 plays a role in maintaining the function of mitochondria - which supply cells with energy - and in disposing of defective mitochondria. Fbxo7 performs many of its functions by adding a small tag, called ubiquitin, onto other "target" proteins. This ubiquitin tag usually causes the target proteins to be disposed of by a large degrading enzyme called the proteasome, but in some cases, it can alter the target protein's function or move it around the cell. Fbxo7 also interacts with a partner protein called PI31 that attaches proteasomes to motor proteins to move them around within a cell. Our findings suggest that the addition of ubiquitin to target proteins by Fbxo7, with or without the help of its partner PI31, is likely to be akey factor in regulating mitochondria and/or proteasome trafficking inside the cell during the final phase of sperm remodelling.Our key goals are:1. To find out what is going wrong in the testes of males lacking Fbxo7 and PI31 - are the mitochondria fragmented or deformed, are they being carried to the right location within the cell, and are they working normally? Alternatively, is there a problem with proteasome localisation? We will investigate this using fluorescence microscopy and electron microscopy in conjunction with staining for markers of each of these processes.2. To identify what Fbxo7 is doing biochemically in normal testes - what is it attaching ubiquitin to, and what effect does this have? Does it require help from PI31? What proteins associate with proteasomes when sperms are being sculpted and how is this controlled by Fbxo7 and PI31. We will investigate this by comparing the ubiquitin-tagged proteins and the proteasome-associated proteins in cells from mice lacking Fbxo7 and PI31.Understanding how these events take place is important from both a pure science and a medical perspective - for example, understanding Fbxo7 function may help us understand and eventually treat sterility in some infertile patients who make no sperm. Conversely, selectively interfering with Fbxo7 function in the testes could become the basis for novel methods of male contraception. Fbxo7 is also important in other tissues: many different cell types such as red blood cells and nerve cells also undergo remodelling to transform their shapes, and Fbxo7 deficiency is also associated with anaemia and neurological conditions such as Parkinson's disease. Understanding how Fbxo7 and PI31 control cell shape in the testis may shed light on their role(s) in these other diseases as well.
精子细胞是人体内最小的细胞,为了游得更快,精子细胞几乎排出了所有的细胞内容物。因此,成熟精子的产生可能涉及所有哺乳动物生物学中最激进的细胞形状变化。随着精子的发育,它们在支持和塑造精子的哺育细胞(支持细胞)内被拖入深深的凹陷(“隐窝”)。在其中,发育中的精子细胞准备好清除细胞质,并将其打包以供支持细胞处理。当精子意识到自己的最终形状时,它们被推回隐窝,最终释放为自由生活的成熟精子细胞。到目前为止,人们对协调这种转变并控制每个细胞如何塑造成最终形状的过程知之甚少。我们最近发现,一种名为Fbxo7的蛋白质对于精子在呈现这种流线型形状的过程中的精确时间重塑至关重要。在缺乏Fbxo7的雄性小鼠中,精子细胞正常发育,直到它们进入隐窝--然而,这些细胞从未离开过隐窝,而是一下子全部死亡。这表明,Fbxo7是制造精子的细胞重塑步骤所必需的。我们知道,Fbxo7在维持线粒体的功能--为细胞提供能量--以及处理有缺陷的线粒体方面发挥了作用。Fbxo7通过在其他“靶”蛋白质上添加一个称为泛素的小标签来实现其许多功能。这种泛素标签通常会导致目标蛋白被一种名为蛋白酶体的大型降解酶处理掉,但在某些情况下,它可以改变目标蛋白的功能或在细胞内移动它。Fbxo7还与一种名为PI31的伙伴蛋白相互作用,PI31将蛋白酶体连接到马达蛋白上,使它们在细胞内移动。我们的发现表明,Fbxo7在其伴侣PI31的帮助下或在其帮助下将泛素添加到靶蛋白中,可能是在精子重塑的最后阶段调节线粒体和/或蛋白酶体在细胞内运输的关键因素。我们的关键目标是:1.找出缺乏Fbxo7和PI31的男性睾丸中的问题-线粒体是否碎裂或变形,它们是否被带到细胞内的正确位置,以及它们是否正常工作?或者,蛋白酶体的本地化有问题吗?我们将使用荧光显微镜和电子显微镜结合每个过程的标记染色来研究这一点。为了确定Fbxo7在正常睾丸中的生化作用-它将泛素附着到什么上,这有什么影响?它需要PI31的帮助吗?当精子被塑造时,什么蛋白质与蛋白酶体相关,这是如何由Fbxo7和PI31控制的。我们将通过比较缺乏Fbxo7和PI31的小鼠细胞中泛素标记的蛋白和蛋白酶体相关蛋白来研究这一点。从纯科学和医学角度来看,了解这些事件是如何发生的都很重要-例如,了解Fbxo7的功能可能有助于我们理解并最终治疗一些没有精子的不孕不育患者。相反,选择性地干扰睾丸中的Fbxo7功能可能成为男性避孕新方法的基础。Fbxo7在其他组织中也很重要:许多不同类型的细胞,如红细胞和神经细胞,也会经历重塑以改变其形状,Fbxo7缺乏症也与贫血和帕金森氏症等神经疾病有关。了解Fbxo7和PI31是如何控制睾丸细胞形状的,可能会揭示它们在这些其他疾病中的作用(S)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heike Laman其他文献

Uroplakin III, a novel Sic substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization
Uroplakin III 是非洲爪蟾卵筏中的一种新型 Sic 底物,是受精所必需的精子蛋白酶的靶标
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomisato;W;Heike Laman;Kayoko Maehara;Sakakibara et al.;Hirose E. et al.;Sato et al.;Bravou V. et al.;Tokmakov et al.;Karakaidos P. et al.;Xouri G. et al.;Sakakibara et al.;Nishitani H. et al.;Sugimoto N. et al.;Kurokawa et al.;Mahbub Hasan et al.
  • 通讯作者:
    Mahbub Hasan et al.
Real-time in vivo imaging of p16^<Ink4a> unveils a cross talk between p53 and p16^<Ink4a>
p16^<Ink4a> 的实时体内成像揭示了 p53 和 p16^<Ink4a> 之间的串扰
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laman;H.;Funes;J.;Ye;H.;Henderson;S.;Galinanes-Garcia;L.;Hara;E.;Knowles;P.;McDonald;N.;Boshoff;C.;Heike Laman;Kayoko Maehara;Naoko Ohtani;Eiji Hara;Eiji Hara
  • 通讯作者:
    Eiji Hara
Functional, biochemical, and chromatographic characterization of the complete [Ca^<2+>]_1 oscillation-inducing activity of porcine sperm
猪精子完整 [Ca^<2 >]_1 振荡诱导活性的功能、生化和色谱表征
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomisato;W;Heike Laman;Kayoko Maehara;Sakakibara et al.;Hirose E. et al.;Sato et al.;Bravou V. et al.;Tokmakov et al.;Karakaidos P. et al.;Xouri G. et al.;Sakakibara et al.;Nishitani H. et al.;Sugimoto N. et al.;Kurokawa et al.
  • 通讯作者:
    Kurokawa et al.
Egg fertilizome : From transmembrane signaling to translational control of gene expression in the initiation of development : In: Focus on Genome Research(Williams, C.R.ed.)
卵子受精组:从跨膜信号传导到发育起始中基因表达的翻译控制:In:聚焦基因组研究(Williams,C.R.ed.)
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomisato;W;Heike Laman;Kayoko Maehara;Sakakibara et al.;Hirose E. et al.;Sato et al.;Bravou V. et al.;Tokmakov et al.;Karakaidos P. et al.;Xouri G. et al.;Sakakibara et al.;Nishitani H. et al.;Sugimoto N. et al.;Kurokawa et al.;Mahbub Hasan et al.;Sato K.et al.;Nishitani H. et al.;西谷 秀男;Tokmakov A.A.et al.;Sato K.et al.;Sakakibara K.et al.;Sakakibara K.et al.;Sato K.et al.;Kurokawa M.et al.;Kurokawa M.et al.;Sato K.et al.;Hadiarto et al.;Iwasaki et al.;Sato K.et al.
  • 通讯作者:
    Sato K.et al.
Visualizing the dynamics of Oncogenic stress response in living mice.
可视化活体小鼠致癌应激反应的动态。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laman;H.;Funes;J.;Ye;H.;Henderson;S.;Galinanes-Garcia;L.;Hara;E.;Knowles;P.;McDonald;N.;Boshoff;C.;Heike Laman;Kayoko Maehara;Naoko Ohtani
  • 通讯作者:
    Naoko Ohtani

Heike Laman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heike Laman', 18)}}的其他基金

Regulation of the proteasome by Fbxo7
Fbxo7 对蛋白酶体的调节
  • 批准号:
    BB/J007846/1
  • 财政年份:
    2012
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Molecular analysis of a dual action F box protein in cell cycle regulation
细胞周期调节中双作用 F 盒蛋白的分子分析
  • 批准号:
    BB/F012764/1
  • 财政年份:
    2008
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Fellowship
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
  • 批准号:
    MR/X034100/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Standard Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
  • 批准号:
    DP240100566
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Projects
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
  • 批准号:
    MR/Y022947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
  • 批准号:
    MR/Y000021/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
  • 批准号:
    2333286
  • 财政年份:
    2024
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了