Self-centred vs. other-centred homeostatic plasticity in inhibitory interneurons
抑制性中间神经元中以自我为中心与以他人为中心的稳态可塑性
基本信息
- 批准号:BB/X014568/1
- 负责人:
- 金额:$ 54.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the defining hallmarks of life is homeostasis: maintaining a constant state despite shifting conditions, by compensating for perturbations away from a desired set point. Yet this compensation is imperfect, and sometimes might even backfire. For example, after injuring your foot, you might start limping, but the imbalanced gait could then cause back pain. Understanding when and how biological compensation backfires requires a better understanding of compensatory mechanisms.We apply this general question to the problem of how the brain maintains stable levels of neuronal activity. This stability is important because neurons in the brain are all connected: when a neuron fires an electrical impulse, it sends chemical signals to other neurons that either excite them (make them fire) or inhibit them (stop them from firing). If excitation and inhibition become imbalanced, a neural network can spiral out of control into a seizure (too much excitation) or silence (too much inhibition). Yet our brains are constantly changing as we learn based on sensory experience. To stop these changes from unbalancing excitation and inhibition, the brain readjusts neurons and their connections to compensate for the changes and restore stable activity levels, a process called "homeostatic plasticity". Problems with homeostatic plasticity are thought to contribute to disorders like epilepsy, autism, and schizophrenia.We address in particular the homeostatic plasticity of inhibitory neurons. How should inhibitory neurons compensate for changes in their activity? Taking the perspective of the whole network, you might expect that if inhibitory neurons are too active, it's because they're overactivated by the excitatory neurons, so the inhibitory neurons should become even more active so as to better silence their excitatory neighbours. We call this "other-centred" plasticity because the inhibitory neurons mainly care about stabilising the activity of excitatory neurons. On the other hand, more "selfish" inhibitory neurons might notice only that they're too active, and therefore reduce their own activity to return to their preferred set point. This "self-centred" compensation would backfire at the network level, as their excitatory neurons would get even less inhibition than usual, so they would become more active, which worsens the original problem. That is, a compensation rule that makes sense at the local level (it restores the normal activity of the inhibitory neuron) is counterproductive and makes things worse at the network level (because the excitatory neurons become even more active).Surprisingly, both self-centred and other-centred compensation in inhibitory neurons have been observed in different studies. It's not clear in what contexts one or the other occurs, or by what mechanisms. Answering these questions will help us better understand how neural networks maintain normal activity levels.We'll study this problem using the olfactory system of the fruit fly Drosophila, where some inhibitory neurons compensate in a self-centred way, while others compensate in an other-centred way. This contrast will let us compare how the self-centred and other-centred neurons affect their excitatory partners and what mechanisms control the plasticity. First, we'll identify which inhibitory neurons use self-centred vs. other-centred compensation, and if they follow different rules in different contexts. Then, we'll test our hypothesis that self-centred inhibitory compensation backfires and increases activity of excitatory neurons. Finally, we'll investigate the different mechanisms underlying self- vs. other-centred compensation. In particular, we hypothesise that self-centred plasticity uses signalling mechanisms entirely internal to the inhibitory neuron, whereas other-centred plasticity relies on interactions between excitatory and inhibitory neurons (e.g., excitatory neurons "ask" inhibitory neurons for more inhibition).
生命的标志之一是内稳态:通过补偿偏离理想设定点的扰动,尽管条件发生变化,但仍保持恒定状态。然而,这种补偿是不完美的,有时甚至可能适得其反。例如,在你的脚受伤后,你可能会开始跛行,但不平衡的步态可能会导致背痛。要了解生物补偿何时以及如何产生反作用,需要更好地理解补偿机制,我们将这个普遍问题应用于大脑如何维持稳定的神经元活动水平的问题。这种稳定性很重要,因为大脑中的神经元都是相互连接的:当一个神经元发出电脉冲时,它会向其他神经元发送化学信号,这些信号要么激发它们(使它们放电),要么抑制它们(阻止它们放电)。如果兴奋和抑制变得不平衡,神经网络可能会失控,陷入癫痫发作(过度兴奋)或沉默(过度抑制)。然而,当我们基于感官经验学习时,我们的大脑也在不断变化。为了阻止这些变化使兴奋和抑制失衡,大脑重新调整神经元及其连接以补偿这些变化并恢复稳定的活动水平,这一过程称为“稳态可塑性”。内稳态可塑性的问题被认为是导致癫痫、自闭症和精神分裂症等疾病的原因。我们特别讨论抑制性神经元的内稳态可塑性。抑制性神经元应该如何补偿其活动的变化?从整个网络的角度来看,你可能会认为,如果抑制性神经元过于活跃,那是因为它们被兴奋性神经元过度激活,所以抑制性神经元应该变得更加活跃,以便更好地沉默它们的兴奋性邻居。我们称之为“他人中心”可塑性,因为抑制性神经元主要负责稳定兴奋性神经元的活动。另一方面,更“自私”的抑制性神经元可能只注意到它们太活跃了,因此减少自己的活动以返回到它们喜欢的设定点。这种“自我中心”的补偿在网络层面上会适得其反,因为它们的兴奋性神经元会比平时受到更少的抑制,所以它们会变得更加活跃,这就是最初的问题。也就是说,在局部水平上有意义的补偿规则(它恢复了抑制性神经元的正常活动)会适得其反,并使网络水平上的情况变得更糟(因为兴奋性神经元变得更加活跃)。令人惊讶的是,在不同的研究中,抑制性神经元中既有自我中心的补偿,也有他者中心的补偿。目前还不清楚这两种情况发生在什么背景下,或者是通过什么机制发生的。回答这些问题将有助于我们更好地理解神经网络是如何维持正常活动水平的。我们将使用果蝇的嗅觉系统来研究这个问题,其中一些抑制性神经元以自我为中心的方式进行补偿,而另一些则以其他为中心的方式进行补偿。这种对比将让我们比较自我中心和他人中心的神经元如何影响它们的兴奋性伙伴,以及控制可塑性的机制。首先,我们将确定哪些抑制性神经元使用自我中心与他人中心的补偿,以及它们在不同的环境中是否遵循不同的规则。然后,我们将测试我们的假设,即自我中心的抑制性补偿适得其反,并增加兴奋性神经元的活动。最后,我们将研究自我与他人中心补偿的不同机制。特别是,我们假设自我中心的可塑性使用完全在抑制性神经元内部的信号传导机制,而其他中心的可塑性依赖于兴奋性和抑制性神经元之间的相互作用(例如,兴奋性神经元“要求”抑制性神经元更多的抑制)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lin其他文献
Definitions of Obstetric and Gynecologic Hospitalists.
妇产科住院医师的定义。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:7.2
- 作者:
Brigid McCue;R. Fagnant;Arthur Townsend;M. Morgan;Shefali Gandhi;Tanner L Colegrove;Harriet Stosur;R. Olson;Karenmarie Meyer;Andrew Lin;J. Tessmer - 通讯作者:
J. Tessmer
AUTOMATED ELECTRONIC ALERTS FOR DETECTION OF INFECTED CARDIOVASCULAR IMPLANTABLE ELECTRONIC DEVICE IN PATIENTS WITH BACTEREMIA
- DOI:
10.1016/s0735-1097(23)00620-4 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Andrew Lin;Francesca Torriani;Kevin Sung;Emily Trefethen;Nick Near;Travis Pollema;Ulrika Birgersdotter-Green - 通讯作者:
Ulrika Birgersdotter-Green
Changes to the serum lipidome and their relation to coronary plaque in the first six months after acute myocardial infarction
- DOI:
10.1016/j.atherosclerosis.2025.120421 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.700
- 作者:
Jake B. White;Andrew Lin;Nicholas J. Montarello;Christina A. Bursill;Gemma A. Figtree;Damini Dey;Marten F. Snel;Johan W. Verjans;Dennis TL. Wong;Peter J. Psaltis - 通讯作者:
Peter J. Psaltis
EFFECT OF LOW-DOSE COLCHICINE ON PERICORONARY INFLAMMATION AND CORONARY PLAQUE COMPOSITION IN CHRONIC CORONARY DISEASE
- DOI:
10.1016/s0735-1097(24)03374-6 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Aernoud Fiolet;Andrew Lin;Jacek Kwiecinski;Kajetan Grodecki;B.K. Velthuis;Damini Dey;Arend Mosterd - 通讯作者:
Arend Mosterd
Phase II Study of Pharmacokinetic Model-Based ATG Dosing to Improve Survival through Enhanced Immune Reconstitution in Pediatric and Adult Patients Undergoing Ex Vivo CD34-Selected Allogeneic HCT (PRAISE-IR)
- DOI:
10.1016/j.jtct.2024.02.008 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Michael Scordo;Miguel-Angel Perales;Audrey Mauguen;Andrew Lin;Binni Kunvarjee;Linh Khanh Nguyen;Jennifer Bieler;Maria Paes Pena;Christina Cho;Boglarka Gyurkocza;Andrew C. Harris;Ann A. Jakubowski;Dr. Richard J. Lin;Esperanza B. Papadopoulos;Ioannis Politikos;Doris M. Ponce;Brian C. Shaffer;Gunjan L. Shah;Barbara Spitzer;Roni Tamari - 通讯作者:
Roni Tamari
Andrew Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lin', 18)}}的其他基金
Testing the role of sleep in homeostatic plasticity
测试睡眠在稳态可塑性中的作用
- 批准号:
BB/X000273/1 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Research Grant
Anti-memories through compartmentalised activity in a single neuron in a Drosophila memory centre
通过果蝇记忆中心单个神经元的分区活动来实现反记忆
- 批准号:
BB/S016031/1 - 财政年份:2020
- 资助金额:
$ 54.46万 - 项目类别:
Research Grant
相似海外基金
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 54.46万 - 项目类别:
EU-Funded
A Person-Centred Approach to Understanding Trust in Moral Machines
以人为本的方法来理解道德机器的信任
- 批准号:
EP/Y00440X/1 - 财政年份:2024
- 资助金额:
$ 54.46万 - 项目类别:
Research Grant
ExtraCECI: A cluster randomised controlled trial of community-based person-centred enhanced care for people with HIV/AIDS in Ghana
ExtraCECI:一项以社区为基础、以人为本的强化对加纳艾滋病毒/艾滋病患者护理的整群随机对照试验
- 批准号:
MR/Y019865/1 - 财政年份:2024
- 资助金额:
$ 54.46万 - 项目类别:
Research Grant
An Integrated Life-Course Approach for Person-Centred Solutions and Care for Ageing with Multimorbidity in the European Regions - STAGE; Stay Healthy Through Ageing (STAGE)
欧洲地区以人为本的解决方案和多病态老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10109957 - 财政年份:2024
- 资助金额:
$ 54.46万 - 项目类别:
EU-Funded
BBconnect - a people-centred, system aware design feasibility investigation that aims to define innovation opportunities, generate and evaluate viable ideas for more accessible, effective and integrated bladder and bowel healthcare services.
BBconnect - 一项以人为本、系统意识的设计可行性调查,旨在定义创新机会,生成和评估可行的想法,以提供更方便、有效和综合的膀胱和肠道医疗保健服务。
- 批准号:
10089501 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Collaborative R&D
ECO-VLF - Environment Centred Optimisation via Virtual Learning Factory
ECO-VLF - 通过虚拟学习工厂以环境为中心的优化
- 批准号:
10059627 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Launchpad
Designing the Virtual Mill: Human-centred research to develop a digital virtual mill to accelerate sustainability, materials traceability and responsible sourcing in textile supply chains.
设计虚拟工厂:以人为本的研究,开发数字虚拟工厂,以加速纺织品供应链的可持续性、材料可追溯性和负责任的采购。
- 批准号:
10049531 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Collaborative R&D
Exploring how affordable, global people-centred geospatial data products could help planners to evaluate, plan and track progress to UN SDGs 3, 11 and 15
探索经济实惠、以人为本的全球地理空间数据产品如何帮助规划者评估、规划和跟踪联合国可持续发展目标 3、11 和 15 的进展
- 批准号:
10050824 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Collaborative R&D
Planning and designing a patient-centred measure for physician workload in the pediatric emergency department
规划和设计以患者为中心的儿科急诊医生工作量措施
- 批准号:
480759 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Miscellaneous Programs
Improving health information sharing in assisted living communities: Supporting a community-led, person-centred, collaborative approach to the design of health information sharing technologies
改善辅助生活社区的健康信息共享:支持以社区为主导、以人为本的协作方法来设计健康信息共享技术
- 批准号:
486873 - 财政年份:2023
- 资助金额:
$ 54.46万 - 项目类别:
Miscellaneous Programs