AI to monitor changes in social behaviour for the early detection of disease in dairy cattle
人工智能监测社会行为变化,及早发现奶牛疾病
基本信息
- 批准号:BB/X017559/1
- 负责人:
- 金额:$ 85.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the UK, dairy milk is a key part of the economy and an important source of nutrition. There are several diseases that regularly develop in UK dairy cows which compromise health and welfare, and lead to economic losses for the farmer and industry. Ill cows have also been found to contribute disproportionately to methane emissions and hence the environmental sustainability of the sector. In addition, high welfare is more important than ever to satisfy societal demands for food production.To help farmers detect and treat these diseases, numerous solutions for automated monitoring of dairy cattle are now available to farmers. A critical disadvantage of all these technologies is that they are focussed on detecting the observable symptoms of later stage disease, when treatment options may be limited, reduction of milk production persistent and animal welfare more severely compromised.A cow's response to infection and trauma is to de-prioritise behaviours not immediately essential to survival and recovery - such as social interactions - in favour of those that remain critical for longer, In a recent study we have found that social exploration, the grooming of others and receiving headbutts were lower in individuals with early stage mastitis. We hence hypothesise that social behaviour changes could be early predictors of disease.Detecting social behaviour changes is difficult for the busy farmer, but is possible by monitoring them at key focal points, such as when queueing for milking or feeding at the feed bunk, using video cameras and artificial intelligence (AI). We have developed highly robust AI that can track the motion of cows in video and recognises each individual through their distinctive coat pattern. Others have now demonstrated good classification of affiliative and agonistic social interactions from video and hence we now propose combining the two ideas to track changes in activities and social behaviours over time for each identified cow in a herd. From collecting two years of video from 64 cameras covering the main barn at our John Oldacre Centre dairy farm, we will train a model that learns what types of behaviours change over time that are indicative of different early stage diseases. We will focus on mastitis and lameness, as these diseases have the greatest incidence in our data and are the most important for the UK dairy industry. At the same time, we will sample the saliva of a subset of our herd so we can determine general levels of inflammation, enabling us to see how specific our behavioural predictors are to particular diseases.Dairy farmers are specialists in the behaviour and personalities of their cattle and their input will be vital to helping understand vagaries in farm data and how our system is functioning. We will test our system by deploying it at a network of recruited farms, and will conduct in-depth semi-structured interviews with the farmers regarding their experiences of camera placement (including intrusiveness and social acceptance by farm workers), operation and any other perceived impacts to their farms, farm workers or animal management, health and welfare. It is also critical that we design the system with all facets of industry, to engage their diverse insights and expertise in setting alert levels, designing user-friendly interfaces that will be well placed to be uptaken and discussing additional routes to market such as for disease surveillance. We have therefore assembled a consortium of partners covering all key areas from farmers to vets, the supply chain, data/diagnostic service providers and business development, all of whom we have a proven track record of successful engagement and impact with. Through consultation we will develop a sustainable strategy for meaningful lay stakeholder and public involvement with our system and results, helping to promote a widespread understanding and public/stakeholder acceptance of the system.
在英国,牛奶是经济的重要组成部分,也是重要的营养来源。有几种疾病经常在英国奶牛中发生,危害健康和福利,并导致农民和行业的经济损失。生病的奶牛也被发现不成比例地增加甲烷排放,从而影响该部门的环境可持续性。此外,高福利对于满足社会对食品生产的需求比以往任何时候都更加重要。为了帮助农民检测和治疗这些疾病,农民现在可以使用许多自动化监控奶牛的解决方案。所有这些技术的一个关键缺点是,它们专注于检测晚期疾病的可观察症状,此时治疗选择可能有限,奶牛对感染和创伤的反应是降低对生存和恢复不直接必要的行为的优先级-例如社会互动-在最近的一项研究中,我们发现,在患有早期乳腺炎的个体中,社会探索、梳理他人和接受头槌的程度较低。因此,我们假设社会行为变化可能是疾病的早期预测因子。对于忙碌的忙碌农民来说,检测社会行为变化是困难的,但通过在关键点监测它们是可能的,例如在挤奶或在饲料槽喂食时,使用摄像机和人工智能(AI)。我们已经开发出高度强大的人工智能,可以在视频中跟踪奶牛的运动,并通过它们独特的皮毛图案识别每一个个体。其他人现在已经证明了对视频中的亲和性和竞争性社交互动的良好分类,因此我们现在建议将这两个想法结合起来,以跟踪牛群中每头已识别奶牛的活动和社交行为随时间的变化。通过收集覆盖John Oldacre中心奶牛场主谷仓的64台摄像机的两年视频,我们将训练一个模型,该模型将学习哪些类型的行为随时间变化,这些行为表明不同的早期疾病。我们将重点关注乳腺炎和跛行,因为这些疾病在我们的数据中发病率最高,对英国乳制品行业也是最重要的。与此同时,我们还将对部分牛群的唾液进行采样,以便确定炎症的总体水平,从而了解我们的行为预测因子对特定疾病的特异性。奶农是牛的行为和个性方面的专家,他们的意见对于帮助理解农场数据中的异常情况以及我们的系统如何运作至关重要。我们将通过在招募的农场网络中部署我们的系统来测试我们的系统,并将对农民进行深入的半结构化访谈,了解他们对相机放置的体验(包括农场工人的侵入性和社会接受度),操作以及对其农场,农场工人或动物管理,健康和福利的任何其他感知影响。同样重要的是,我们在设计系统时要考虑到行业的各个方面,让他们在设置警报级别时有不同的见解和专业知识,设计易于使用的用户友好界面,并讨论其他进入市场的途径,如疾病监测。因此,我们组建了一个合作伙伴联盟,涵盖从农民到兽医、供应链、数据/诊断服务提供商和业务发展的所有关键领域,我们与所有这些合作伙伴都有成功合作和影响的良好记录。通过咨询,我们将制定一个可持续的战略,让非专业利益相关者和公众参与我们的系统和结果,帮助促进公众/利益相关者对系统的广泛理解和接受。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Dowsey其他文献
A CFD STUDY ON CORONARY ARTERY HAEMODYNAMICS WITH DYNAMIC VESSEL MOTION BASED ON MR IMAGES
- DOI:
10.1016/s0021-9290(08)70212-4 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Ryo Torii;Jennifer Keegan;Andrew Dowsey;Nigel Wood;Guang-Zhong Yang;David Firmin;Alun Hughes;Simon Thom;X. Yun Xu - 通讯作者:
X. Yun Xu
Understanding the placental mechanisms underpinning increased fetal growth in a mouse model of FGR following sildenafil citrate treatment: Insight from network analyses
- DOI:
10.1016/j.placenta.2015.07.214 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Adam Stevens;Richard Unwin;Nitin Rustogi;Andrew Dowsey;Garth Cooper;Susan Greenwood;Mark Wareing;Philip Baker;Colin Sibley;Melissa Westwood;Mark Dilworth - 通讯作者:
Mark Dilworth
Andrew Dowsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Dowsey', 18)}}的其他基金
Belgium: Taming the application of statistics in proteomics and metabolomics
比利时:掌握统计学在蛋白质组学和代谢组学中的应用
- 批准号:
BB/R021430/1 - 财政年份:2018
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
MICA: Delivering a production platform and atlas for next-generation biomarker discovery, validation and assay development in clinical proteomics
MICA:为临床蛋白质组学中的下一代生物标志物发现、验证和检测开发提供生产平台和图谱
- 批准号:
MR/N028457/1 - 财政年份:2017
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC: Bayesian Quantitative Proteomics
双边 NSF/BIO-BBSRC:贝叶斯定量蛋白质组学
- 批准号:
BB/M024954/2 - 财政年份:2016
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
A holistic statistical modelling approach to quantitative discovery proteomics and metabolomics for underpinning integrative systems medicine
用于定量发现蛋白质组学和代谢组学的整体统计建模方法,用于支持综合系统医学
- 批准号:
MR/L011093/3 - 财政年份:2016
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
A holistic statistical modelling approach to quantitative discovery proteomics and metabolomics for underpinning integrative systems medicine
用于定量发现蛋白质组学和代谢组学的整体统计建模方法,用于支持综合系统医学
- 批准号:
MR/L011093/2 - 财政年份:2015
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC: Bayesian Quantitative Proteomics
双边 NSF/BIO-BBSRC:贝叶斯定量蛋白质组学
- 批准号:
BB/M024954/1 - 财政年份:2015
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
ProteoFormer - a software toolkit for top-down proteomics
ProteoFormer - 用于自上而下蛋白质组学的软件工具包
- 批准号:
BB/L018454/2 - 财政年份:2015
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
Unifying metabolome and proteome informatics
统一代谢组和蛋白质组信息学
- 批准号:
BB/L018616/2 - 财政年份:2015
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
ProteoFormer - a software toolkit for top-down proteomics
ProteoFormer - 用于自上而下蛋白质组学的软件工具包
- 批准号:
BB/L018454/1 - 财政年份:2014
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
Unifying metabolome and proteome informatics
统一代谢组和蛋白质组信息学
- 批准号:
BB/L018616/1 - 财政年份:2014
- 资助金额:
$ 85.19万 - 项目类别:
Research Grant
相似国自然基金
面向认知网络的自律计算模型及评价方法研究
- 批准号:60973027
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
- 批准号:
10536262 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
- 批准号:
10686592 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Managing metabolic disruption in pancreatic cancer to prevent weight loss and improve quality of life
管理胰腺癌的代谢紊乱以防止体重减轻并提高生活质量
- 批准号:
10722888 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Sleep Extension: A Novel Intervention for Weight Loss in Young Adults
延长睡眠:年轻人减肥的新干预措施
- 批准号:
10753226 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Assessing Diffusion MRI Metrics for Detecting Changes of Synaptic Density in Alzheimer's Disease
评估弥散 MRI 指标以检测阿尔茨海默病突触密度的变化
- 批准号:
10739911 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
SBIR Phase II: Sensor-based bra to measure breast milk output and monitor changes in breast volume before and after breastfeeding or breast pumping
SBIR 第二阶段:基于传感器的胸罩,用于测量母乳产量并监测母乳喂养或吸奶前后乳房体积的变化
- 批准号:
2210952 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Cooperative Agreement
Development of a novel small molecule RPN13 inhibitor and therapeutic for advanced ovarian cancer patients
开发新型小分子 RPN13 抑制剂和治疗晚期卵巢癌患者的药物
- 批准号:
10760824 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
The National Diabetes Prevention Program in Rural Communities
国家农村社区糖尿病预防计划
- 批准号:
10737009 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别:
Brain Connectivity Changes with Spinal Cord Stimulation Treatment of Chronic Pain: A Resting State NIRS/EEG Study
慢性疼痛的脊髓刺激治疗引起的大脑连接变化:静息状态 NIRS/EEG 研究
- 批准号:
10701130 - 财政年份:2023
- 资助金额:
$ 85.19万 - 项目类别: