Unifying metabolome and proteome informatics

统一代谢组和蛋白质组信息学

基本信息

  • 批准号:
    BB/L018616/1
  • 负责人:
  • 金额:
    $ 18.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Biologists are increasing wishing to understand the complex interactions between the building blocks of genes, metabolites and proteins that control the function of every living organism. The field of systems biology has emerged to overcome the deficiencies of the traditional reductionist approach, which has identified the building blocks themselves and many of the individual interactions but has not been able to deduce how systems of these blocks act and react in unison. The application of systems biology is widespread, as it promises to revolutionise our understanding of healthy processes in plants, animals and humans, as well as how they break down under disease and how this breakdown can be averted.Often the systems biology approach starts with a 'snapshot' of a particular biological sample. Mass spectrometry is a pervasive technique for gaining a snapshot of a sample, and it does this by ionising the sample and then measuring each constituent compound's mass and quantity based on the resulting charge. This is often not enough to separate out the sample fully and therefore a preceding phase of liquid or gas chromatography is used to provide an initial separation. Classes of protein and metabolite require different sample preparation, ionisation and chromatography approaches. These all add different kinds of biases and variation which make it extremely challenging to infer links between compounds, especially if the compounds are from different classes. To make matters worse, many snapshots are needed to capture different 'angles' of the biological process under investigation, and the instrumental conditions themselves are not entirely reproducible over time. All this has led systems biology to become a progressively computational discipline.The academic disciplines for studying global patterns of proteins ('proteomics') and metabolites ('metabolites') have broadly originated from different fields, and therefore there is little synergy between the two. This is also the case for the computational aspect, despite the fact both are applied to mass spectrometry data. Cross-fertilisation of methodology and ideas therefore has the prospect of seeding novel, effective new approaches of analysis. The project team is involved in the development of the prominent mzMatch and ProteoSuite informatics packages for metabolomics and proteomics respectively. They are the most actively developed academic metabolome and proteome informatics packages in the UK. Therefore there is a timely opportunity to lead a concerted effort bringing together the informatics community, methodology and software for metabolomics and proteomics to: (a) Establish a new, powerful unified informatics workflow 'borrowing strength' in methodology advancements across both fields, greater than the sum of its parts and with coherent statistical properties enabling optimal integration into systems biology research; (b) Underpin cross-disciplinary collaborations, new understanding and mobility between metabolomics and proteomics fields; and (c) Support development of joint data exchange and reporting standards for optimal integration of metabolomics and proteomics data. To achieve this, we will first integrate mzMatch into ProteoSuite with unified data exchange and reporting. This will then enable the development of the novel unified informatics pipeline. The key is to use the same underlying statistical methodology for both types of omics, with analysis differing only in biological models utilised, thus underpinning coherent delivery to downstream systems biology modelling. We will also spearhead a programme of community involvement to encourage long-term community participation in the unified informatics approach. This will include an international one-day workshop drawing in leading groups from both metabolome and proteome informatics disciplines for the first time, in order to foster a shared mind-set towards unifying the two fields.
生物学家越来越希望了解控制每个生物体功能的基因、代谢物和蛋白质的构建模块之间的复杂相互作用。系统生物学领域的出现是为了克服传统还原论方法的缺陷,这种方法已经确定了构建模块本身和许多个体相互作用,但无法推断出这些模块的系统如何一致地行动和反应。系统生物学的应用非常广泛,因为它有望彻底改变我们对植物、动物和人类健康过程的理解,以及它们在疾病下如何分解以及如何避免这种分解。系统生物学方法通常始于特定生物样本的“快照”。质谱法是一种用于获得样品快照的普遍技术,它通过电离样品,然后基于产生的电荷测量每个组成化合物的质量和数量来实现。这通常不足以完全分离出样品,因此使用液相或气相色谱的前一阶段来提供初始分离。不同种类的蛋白质和代谢物需要不同的样品制备、电离和色谱方法。这些都增加了不同种类的偏见和变化,这使得推断化合物之间的联系变得非常具有挑战性,特别是如果化合物来自不同的类别。更糟糕的是,需要许多快照来捕获所研究的生物过程的不同“角度”,并且仪器条件本身并不完全可重复。所有这些都导致系统生物学逐渐成为一门计算学科。研究蛋白质(“蛋白质组学”)和代谢物(“代谢物”)的全球模式的学科广泛起源于不同的领域,因此两者之间几乎没有协同作用。这也是计算方面的情况,尽管事实上两者都适用于质谱数据。因此,方法论和思想的交叉融合前景孕育新颖、有效的新分析方法。该项目团队参与了分别用于代谢组学和蛋白质组学的mzMatch和ProteoSuite信息学软件包的开发。它们是英国最活跃的学术代谢组学和蛋白质组信息学软件包。(a)建立一个新的、强有力的统一信息学工作流程,“借力”两个领域的方法学进步,使其大于各部分的总和,并具有连贯的统计特性,能够最佳地融入系统生物学研究;(B)支持代谢组学和蛋白质组学领域之间的跨学科合作、新的理解和流动性;(c)支持制定联合数据交换和报告标准,以优化代谢组学和蛋白质组学数据的整合。为了实现这一目标,我们将首先将mzMatch集成到ProteoSuite中,实现统一的数据交换和报告。这将使新的统一信息学管道的开发成为可能。关键是对这两种类型的组学使用相同的基本统计方法,分析仅在所使用的生物模型方面有所不同,从而为下游系统生物学建模提供一致的支持。我们还将带头实施一项社区参与计划,鼓励社区长期参与统一信息学方法。这将包括一个为期一天的国际研讨会,首次吸引来自代谢组学和蛋白质组信息学学科的领导小组,以促进统一这两个领域的共同思维。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach.
  • DOI:
    10.1093/bioinformatics/btu370
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daly R;Rogers S;Wandy J;Jankevics A;Burgess KE;Breitling R
  • 通讯作者:
    Breitling R
Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets.
  • DOI:
    10.1093/bioinformatics/btv072
  • 发表时间:
    2015-06-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wandy J;Daly R;Breitling R;Rogers S
  • 通讯作者:
    Rogers S
Unsupervised Discovery and Comparison of Structural Families Across Multiple Samples in Untargeted Metabolomics.
  • DOI:
    10.1021/acs.analchem.7b01391
  • 发表时间:
    2017-07-18
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    van der Hooft JJJ;Wandy J;Young F;Padmanabhan S;Gerasimidis K;Burgess KEV;Barrett MP;Rogers S
  • 通讯作者:
    Rogers S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Dowsey其他文献

A CFD STUDY ON CORONARY ARTERY HAEMODYNAMICS WITH DYNAMIC VESSEL MOTION BASED ON MR IMAGES
  • DOI:
    10.1016/s0021-9290(08)70212-4
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryo Torii;Jennifer Keegan;Andrew Dowsey;Nigel Wood;Guang-Zhong Yang;David Firmin;Alun Hughes;Simon Thom;X. Yun Xu
  • 通讯作者:
    X. Yun Xu
Understanding the placental mechanisms underpinning increased fetal growth in a mouse model of FGR following sildenafil citrate treatment: Insight from network analyses
  • DOI:
    10.1016/j.placenta.2015.07.214
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adam Stevens;Richard Unwin;Nitin Rustogi;Andrew Dowsey;Garth Cooper;Susan Greenwood;Mark Wareing;Philip Baker;Colin Sibley;Melissa Westwood;Mark Dilworth
  • 通讯作者:
    Mark Dilworth

Andrew Dowsey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Dowsey', 18)}}的其他基金

AI to monitor changes in social behaviour for the early detection of disease in dairy cattle
人工智能监测社会行为变化,及早发现奶牛疾病
  • 批准号:
    BB/X017559/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
Belgium: Taming the application of statistics in proteomics and metabolomics
比利时:掌握统计学在蛋白质组学和代谢组学中的应用
  • 批准号:
    BB/R021430/1
  • 财政年份:
    2018
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
MICA: Delivering a production platform and atlas for next-generation biomarker discovery, validation and assay development in clinical proteomics
MICA:为临床蛋白质组学中的下一代生物标志物发现、验证和检测开发提供生产平台和图谱
  • 批准号:
    MR/N028457/1
  • 财政年份:
    2017
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC: Bayesian Quantitative Proteomics
双边 NSF/BIO-BBSRC:贝叶斯定量蛋白质组学
  • 批准号:
    BB/M024954/2
  • 财政年份:
    2016
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
A holistic statistical modelling approach to quantitative discovery proteomics and metabolomics for underpinning integrative systems medicine
用于定量发现蛋白质组学和代谢组学的整体统计建模方法,用于支持综合系统医学
  • 批准号:
    MR/L011093/3
  • 财政年份:
    2016
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC: Bayesian Quantitative Proteomics
双边 NSF/BIO-BBSRC:贝叶斯定量蛋白质组学
  • 批准号:
    BB/M024954/1
  • 财政年份:
    2015
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
A holistic statistical modelling approach to quantitative discovery proteomics and metabolomics for underpinning integrative systems medicine
用于定量发现蛋白质组学和代谢组学的整体统计建模方法,用于支持综合系统医学
  • 批准号:
    MR/L011093/2
  • 财政年份:
    2015
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
ProteoFormer - a software toolkit for top-down proteomics
ProteoFormer - 用于自上而下蛋白质组学的软件工具包
  • 批准号:
    BB/L018454/2
  • 财政年份:
    2015
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
Unifying metabolome and proteome informatics
统一代谢组和蛋白质组信息学
  • 批准号:
    BB/L018616/2
  • 财政年份:
    2015
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant
ProteoFormer - a software toolkit for top-down proteomics
ProteoFormer - 用于自上而下蛋白质组学的软件工具包
  • 批准号:
    BB/L018454/1
  • 财政年份:
    2014
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Grant

相似海外基金

Centrally-linked longitudinal peripheral biomarkers of AD in multi-ethnic populations
多种族人群中 AD 的中心连锁纵向外周生物标志物
  • 批准号:
    10555723
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
Proteomic Signatures Associated with Right Ventricular Failure and Mortality in Pulmonary Arterial Hypertension
与肺动脉高压右心室衰竭和死亡率相关的蛋白质组学特征
  • 批准号:
    10675409
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
  • 批准号:
    10819927
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
AI models of multi-omic data integration for ming longevity core signaling pathways
长寿核心信号通路多组学数据整合的人工智能模型
  • 批准号:
    10745189
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
Omics Core
组学核心
  • 批准号:
    10555725
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
2021 Mitochondria in Health and Disease Gordon Research Conference
2021 年线粒体健康与疾病戈登研究会议
  • 批准号:
    10236763
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
  • 批准号:
    10784808
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
Study Gut Dysbiosis in Anemic Preterm Infants Using a Multiomics Approach
使用多组学方法研究贫血早产儿的肠道菌群失调
  • 批准号:
    10725697
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
Precancer Atlas of Familial Adenomatous Polyposis
家族性腺瘤性息肉病癌前图谱
  • 批准号:
    10900834
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
Discovering Centrally Linked Peripheral Molecular Signatures of Alzheimer's Disease
发现阿尔茨海默病的中心连锁外周分子特征
  • 批准号:
    10555727
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了