Mapping Protein Glycosylation by High-Resolution Single Molecule Imaging
通过高分辨率单分子成像绘制蛋白质糖基化图谱
基本信息
- 批准号:BB/W017024/1
- 负责人:
- 金额:$ 54.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When we think about proteins, the major players of cell function, we tend to visualise round or elongated structures that move throughout the body and operate by interacting with other biomolecules. Fundamentally, this is true, however, a single protein can have an enormous number of structures, each of which interacts with other proteins or biomolecules in different ways and fine-tunes how a protein functions or where it moves in the cell or even how long it lasts in the body. This structural diversity is derived from chemical modifications to the protein and the most common and complex type is called glycosylation - an intricate, non-template driven process that adds complex sugars, termed glycans, to specific sites on a protein. The majority of human proteins are modified by glycans and minor faults in the machinery that adds glycans to proteins leads to a rare but severe condition in humans called Congenital Disorders of Glycosylation, with nearly all those afflicted dying before adulthood. The inability to glycosylate proteins is lethal in all animals including the lowest forms of life, such as yeast. Critically, changes in glycosylation are observed in nearly all human disease states including cancer, diabetes as well as aging. Glycosylation is increasingly important in the biopharmaceutical industry, as most protein-based drugs, like monoclonal antibodies, are glycosylated and glycans can significantly influence their safety and efficacy. Moreover, viruses use glycosylation to hide their surface proteins, which are required for host binding, under so-called "glycan shields" as these protein "spikes" are the principle focus for immune detection and antibody targeting. As a final point, COVID-19 vaccines carry the genetic message to encode the viral spike - a glycoprotein with 66 glycans that has been designed to mimic those found on the surface of SARS-CoV-2. Glycoproteins are prevalent and central in human health and disease progression but we know surprisingly little of how glycans control the function of proteins. This is because we lack the tools capable of dealing with the complexity of glycoproteins. More specifically, a glycoprotein can have many glycosylation sites, each of which can be occupied by one of hundreds of various branched glycan structures - the possible combinations is therefore enormous. Because of this structural complexity we really only fully know the structure of a handful of glycoproteins. Francis Crick, who co-discovered the structure of DNA, once said, "If you want to understand function, study structure" - a statement that is as revenant for glycoproteins today as it was for DNA nearly 70 years ago. Therefore, researchers across many areas of biological and medical research need new tools to study glycoprotein structure to better understand and treat disease. Our research project aims to solve this problem in structural biology by creating a completely new way to characterise glycoproteins by imaging sections of a given glycoprotein (termed a glycopeptide) at the single molecule level. We can then use this information to map what glycan structures are at specific sites on a protein with exact atomic detail of both parts. To make our new method possible, we will advance the molecular "probes" used for taking these single-molecule images - akin to a stylus that translates vinyl etchings into music on a record player. To demonstrate the potential of our new method, we will characterise several glycoprotein-based drugs as well as a lead HIV vaccine candidate glycoprotein, which will add much needed insight into how antibodies interact with glycans on the surface of HIV. This is a key issue for understanding the function and efficacy of structure-based vaccines, including those used for COVID-19.
当我们想到蛋白质,细胞功能的主要参与者时,我们倾向于想象圆形或细长的结构,它们在整个身体中移动,并通过与其他生物分子相互作用来运作。从根本上说,这是真的,然而,一个单一的蛋白质可以有大量的结构,其中每一个与其他蛋白质或生物分子以不同的方式相互作用,并微调蛋白质的功能或它在细胞中的移动,甚至它在体内持续多久。这种结构多样性来源于对蛋白质的化学修饰,最常见和最复杂的类型称为糖基化-一种复杂的非模板驱动过程,将称为聚糖的复杂糖添加到蛋白质上的特定位点。大多数人类蛋白质都被聚糖修饰,而将聚糖添加到蛋白质中的机器中的微小故障会导致人类罕见但严重的疾病,称为先天性糖基化疾病,几乎所有受影响的人都在成年前死亡。不能使蛋白质糖基化在所有动物中是致命的,包括最低级的生命形式,如酵母。重要的是,糖基化的变化在几乎所有人类疾病状态中观察到,包括癌症、糖尿病以及衰老。糖基化在生物制药行业中越来越重要,因为大多数基于蛋白质的药物,如单克隆抗体,都是糖基化的,聚糖可以显著影响其安全性和有效性。此外,病毒使用糖基化来隐藏它们的表面蛋白,这些蛋白是宿主结合所需的,在所谓的“聚糖盾牌”下,因为这些蛋白“刺突”是免疫检测和抗体靶向的主要焦点。最后一点,COVID-19疫苗携带编码病毒刺突的遗传信息--一种具有66个聚糖的糖蛋白,旨在模拟SARS-CoV-2表面上发现的聚糖。糖蛋白在人类健康和疾病进展中是普遍存在和核心的,但我们对聚糖如何控制蛋白质的功能知之甚少。这是因为我们缺乏能够处理糖蛋白复杂性的工具。更具体地,糖蛋白可以具有许多糖基化位点,每个糖基化位点可以被数百种不同的支链聚糖结构中的一种占据-因此可能的组合是巨大的。由于这种结构的复杂性,我们实际上只完全知道少数糖蛋白的结构。弗朗西斯·克里克是DNA结构的发现者之一,他曾说过:“如果你想了解功能,就研究结构吧。”这句话在今天对糖蛋白的意义就像70年前对DNA的意义一样。因此,许多生物和医学研究领域的研究人员需要新的工具来研究糖蛋白结构,以更好地了解和治疗疾病。我们的研究项目旨在通过在单分子水平上对给定糖蛋白(称为糖肽)的切片进行成像来创建一种全新的方法来识别糖蛋白,从而解决结构生物学中的这个问题。然后,我们可以使用这些信息来映射蛋白质上特定位点的聚糖结构,并精确地描述两个部分的原子细节。为了使我们的新方法成为可能,我们将改进用于拍摄这些单分子图像的分子“探针”-类似于将乙烯基蚀刻转化为唱片播放器上的音乐的手写笔。为了证明我们的新方法的潜力,我们将研究几种基于糖蛋白的药物以及一种领先的HIV疫苗候选糖蛋白,这将增加对抗体如何与HIV表面聚糖相互作用的迫切需要的了解。这是理解基于结构的疫苗(包括用于COVID-19的疫苗)的功能和有效性的关键问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weston Struwe其他文献
Weston Struwe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weston Struwe', 18)}}的其他基金
Advancing 'omics discovery via trapped ion mobility spectrometry
通过俘获离子淌度光谱法推进组学发现
- 批准号:
BB/X019519/1 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Research Grant
Visualising Glycoprotein Interaction Dynamics
糖蛋白相互作用动力学可视化
- 批准号:
MR/V02213X/1 - 财政年份:2021
- 资助金额:
$ 54.55万 - 项目类别:
Fellowship
相似国自然基金
子宫内膜间质与巨噬细胞之间通过Protein S-MerTK-Apelin信号对
话促进子宫腺肌病蜕膜化缺陷的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
- 批准号:32372636
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
抑制Protein Kinase D促进胚胎干细胞自我更新的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C2 DOMAIN PROTEIN 1 (C2DP1)基因家族在植物开花调控中的功能研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
凡纳滨对虾Laccase-like protein非酶活依赖参与抗WSSV免疫的分子机制
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
玉米基因Dirigent protein 4的克隆和功能鉴定
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
锌指蛋白33B(Zinc finger protein 33B, ZNF33B)抑制乙型脑炎病毒复制的功能与分子机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
C1q/TNF-related protein 9调控平滑肌细胞程序性坏死抑制动脉粥样硬化的机制研究
- 批准号:81900309
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of protein glycosylation in erythropoiesis
蛋白质糖基化在红细胞生成中的作用
- 批准号:
DP240100832 - 财政年份:2024
- 资助金额:
$ 54.55万 - 项目类别:
Discovery Projects
Identifying understudied protein-related glycoproteome disruption in Congenital Disorders of Glycosylation
识别先天性糖基化障碍中尚未研究的蛋白质相关糖蛋白组破坏
- 批准号:
10725869 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Snapshots into the process of protein glycosylation
蛋白质糖基化过程的快照
- 批准号:
2887209 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Studentship
Probing the Link Between Phase Separation and Glycosylation of an Intrinsically-Disordered-Protein Family.
探讨本质无序蛋白质家族的相分离和糖基化之间的联系。
- 批准号:
547555-2020 - 财政年份:2022
- 资助金额:
$ 54.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Understanding the mechanism of adaptor protein engagement by OGT and its functional effects on glycosylation
了解 OGT 与接头蛋白结合的机制及其对糖基化的功能影响
- 批准号:
10513912 - 财政年份:2022
- 资助金额:
$ 54.55万 - 项目类别:
Protein Glycosylation: Mechanisms and Consequences
蛋白质糖基化:机制和后果
- 批准号:
RGPIN-2018-05053 - 财政年份:2022
- 资助金额:
$ 54.55万 - 项目类别:
Discovery Grants Program - Individual
Glycosyltransferase Engineering to Dissect N-linked Protein Glycosylation
糖基转移酶工程剖析 N 连接蛋白糖基化
- 批准号:
BB/V014862/1 - 财政年份:2022
- 资助金额:
$ 54.55万 - 项目类别:
Research Grant
Cryogenic electron microscopy of integral membrane mannosyltransferases involved in N-linked protein glycosylation
低温电子显微镜观察参与 N 连接蛋白糖基化的整合膜甘露糖基转移酶
- 批准号:
557611-2021 - 财政年份:2022
- 资助金额:
$ 54.55万 - 项目类别:
Postdoctoral Fellowships