Structure, Dynamics and Activity of the Bacterial Secretosome
细菌分泌体的结构、动力学和活性
基本信息
- 批准号:BB/Y004981/1
- 负责人:
- 金额:$ 72.51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
All cells are surrounded by membranes, made up from a double layer of fatty molecules called phospholipids. Cell membranes act as a molecular "skin", keeping the cell's insides in, and separating different biochemical reactions. This barrier needs to be traversed in a controlled manner to allow the import of nutrients, and removal of waste products, and for communication with the outside world. This is achieved by a wide range of proteins that reside in the various membranes. We understand a great deal about the diverse biological functions that membrane proteins bestow, such as transport, respiration, photosynthesis. However, we know very little about how membranes are formed, or about the necessary transport of proteins across or into membranes during their biogenesis.Our proposal aims to gain a complete understanding about how proteins are exported-protein secretion. The secretory ('Sec' for short) machinery is essential for life-for every cell in every organism. The project concerns this process, in bacterial cells. Bacteria secrete proteins for a wide range of membrane and extracellular activities including for: cell adherence, pathogenicity, the degradation of antibiotics, including also the biogenesis of the protective cell wall or envelope. A major class of bacteria known as Gram-negatives, possess a cell wall composed of a periplasm with a peptidoglycan (PG) layer, surrounded by an outer-membrane. The biogenesis of the cell wall is dependent on protein secretion from the cell interior through the Sec machinery. Proteins of the periplasm can readily fold and remain there, while those destined for the cell surface are delivered to another transport machine called the BAM complex, for incorporation into the outer-membrane. The journey from the inner- to the outer-membrane through the envelope, is poorly understood. We are concerned with the question: how do proteins make their way rapidly and efficiently through this very crowded and challenging environment? We have discovered that the protein transport machineries of the inner- (Sec) and outer-membranes (BAM) as well as various accessory factors concerned with quality control interact to form an assembly that spans the bacterial envelope, which we have called the bacterial secretosome. The existence of a contiguous conduit through the envelope will have far reaching implications for our understanding of outer-membrane biogenesis, including an answer to the question posed above.The project will harness complementary expertise in biochemistry and new breakthrough technologies for high resolution imaging (electron microscopy) and accurate mass measurements (mass spectrometry). This powerful combination will allow us to examine the activity, structure and dynamics of the assembly in order to understand how it works-how proteins are delivered through the inner-membrane to the periplasm and the outer-membrane. This knowledge is important because it will enlighten our understanding of a fundamental aspect of bacterial physiology, and inter-membrane transport throughout biology. Moreover, new advances in our understanding of the bacterial secretosome will help develop strategies to compromise envelope biogenesis and its regenerative capabilities-essential for survival. This would generate much needed ammunition in our fight against antimicrobial resistance (AMR).
所有的细胞都被膜包围,膜由一层叫做磷脂的脂肪分子组成。细胞膜扮演着分子“皮肤”的角色,将细胞内部隔离开来,分离不同的生化反应。这一障碍需要以有控制的方式跨越,以允许营养物质的进口、废物的清除以及与外部世界的沟通。这是通过驻留在各种膜中的各种蛋白质来实现的。我们对膜蛋白所具有的运输、呼吸、光合作用等多种生物学功能有了很深的了解。然而,我们对膜是如何形成的,或者关于蛋白质在生物发生过程中必要的跨膜或进入膜的运输知之甚少。我们的建议旨在全面了解蛋白质是如何输出的--蛋白质分泌。分泌(简称SEC)机制对生命至关重要--对每个有机体中的每一个细胞都是如此。该项目涉及细菌细胞中的这一过程。细菌为广泛的细胞膜和细胞外活动分泌蛋白质,包括:细胞黏附、致病性、抗生素的降解,还包括保护细胞壁或包膜的生物发生。革兰氏阴性杆菌是一类主要的细菌,它的细胞壁由外膜包围的周质和肽聚糖(PG)层组成。细胞壁的生物发生依赖于细胞内部通过SEC机制分泌的蛋白质。周质的蛋白质可以很容易地折叠并留在那里,而那些被送到细胞表面的蛋白质则被送到另一台称为BAM复合体的运输机器上,以便结合到外膜中。通过包膜从内膜到外膜的旅程,人们知之甚少。我们关心的问题是:蛋白质如何快速有效地通过这个非常拥挤和具有挑战性的环境?我们发现,内膜(SEC)和外膜(BAM)的蛋白质运输机制以及与质量控制有关的各种辅助因素相互作用,形成一个跨越细菌被膜的组装,我们称之为细菌分泌体。通过包膜的连续管道的存在将对我们对外膜生物发生的理解产生深远的影响,包括对上述问题的回答。该项目将利用生物化学方面的互补专业知识和高分辨率成像(电子显微镜)和精确质量测量(质谱学)的新突破技术。这种强大的结合将使我们能够检查组装的活性、结构和动力学,以了解它是如何工作的--蛋白质是如何通过内膜输送到周质和外膜的。这一知识很重要,因为它将启发我们对细菌生理学的一个基本方面的理解,以及整个生物学中的膜间运输。此外,我们对细菌分泌体理解的新进展将有助于制定策略,以损害包膜生物发生及其再生能力--这是生存所必需的。这将在我们对抗抗菌素耐药性(AMR)的斗争中产生急需的弹药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Collinson其他文献
Single-molecule fluorescence: Elucidating ATP driven protein transport in the sec complex
- DOI:
10.1016/j.bpj.2022.11.482 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Joel A. Crossley;Tomas Fessl;Ian Collinson;Roman Tuma;Sheena E. Radford - 通讯作者:
Sheena E. Radford
The bacterial <em>secretosome</em> for bacterial envelope biogenesis
- DOI:
10.1016/j.bpj.2022.11.2431 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Sara Alvira;Dan Watkins;Sophie Williams;Ian Collinson - 通讯作者:
Ian Collinson
Ian Collinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Collinson', 18)}}的其他基金
Hijacking the Sec machinery in bacterial warfare
在细菌战中劫持安全部机器
- 批准号:
BB/V001531/1 - 财政年份:2021
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Dynamic allostery of Sec machinery in protein transport and folding
蛋白质运输和折叠中Sec机械的动态变构
- 批准号:
BB/T006889/1 - 财政年份:2020
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Deciphering the allosteric mechanism of protein translocation through membranes
破译蛋白质跨膜易位的变构机制
- 批准号:
BB/N015126/1 - 财政年份:2016
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Understanding the Mechanism of Membrane Protein Insertion
了解膜蛋白插入的机制
- 批准号:
BB/M003604/1 - 财政年份:2014
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Centre for structural analysis of complex biological systems
复杂生物系统结构分析中心
- 批准号:
BB/M012107/1 - 财政年份:2014
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Ensemble and single molecule analysis of protein translocation
蛋白质易位的整体和单分子分析
- 批准号:
BB/I008675/1 - 财政年份:2012
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
A biochemical and biophysical analysis of a ubiquitous protein translocation apparatus
普遍存在的蛋白质易位装置的生化和生物物理分析
- 批准号:
BB/F002343/1 - 财政年份:2008
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Analysis of the of the interaction between the SecY protein translocation complex and its substrate pre-protein
SecY蛋白易位复合物与其底物前蛋白相互作用分析
- 批准号:
BB/F007248/1 - 财政年份:2007
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 72.51万 - 项目类别:
Research Grant
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 72.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
- 批准号:
10685132 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
Elucidation of fear extinction mechanisms through in-vivo deep-brain optical imaging and manipulation focused on the activity dynamics in the prelimbic cortex
通过体内深部脑光学成像和操作阐明恐惧消退机制,重点关注前边缘皮层的活动动态
- 批准号:
22KJ0812 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of transcriptional dynamics regulated by poly-ubiquitination activity of PRC1
阐明 PRC1 多泛素化活性调节的转录动力学
- 批准号:
23K05736 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NCS-FO: Uncovering Dynamics of Neural Activity of Subjective Estimation of Time
NCS-FO:揭示主观时间估计的神经活动动态
- 批准号:
2319518 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
Continuing Grant
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
Progesterone and allopregnanolone of prefrontal cortical activity dynamics and heroin seeking
黄体酮和四氢孕酮对前额皮质活动动力学和海洛因寻求的影响
- 批准号:
10644613 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
A new in-silico tool for quantifying the impact of blood flow dynamics on cerebral capillary activity
一种新的计算机模拟工具,用于量化血流动力学对脑毛细血管活动的影响
- 批准号:
2888739 - 财政年份:2023
- 资助金额:
$ 72.51万 - 项目类别:
Studentship














{{item.name}}会员




