Centre for structural analysis of complex biological systems

复杂生物系统结构分析中心

基本信息

  • 批准号:
    BB/M012107/1
  • 负责人:
  • 金额:
    $ 69.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding the function of the molecules of life requires knowledge of their three dimensional structures. Seeing, at or near to the level of individual atoms, how the building blocks of life (proteins and DNA) are assembled enables us to understand both how they may act to drive the chemical reactions that power and maintain living cells, and how they are organised into more complex structures that form the basis of cells and tissues. Detailed knowledge of structure can explain how specific alterations affect function, for example where changes to specific molecules are linked to disease, or how biological systems can be engineered to fulfil useful functions, such as making new drugs or turning carbon dioxide into liquid fuels.Most structures of biological molecules are derived from experiments where ordered crystals of the pure material are exposed to X-rays. The success of this approach relies upon inducing crystals to form. Unfortunately, for many interesting and important biological molecules this remains very difficult, and large numbers of experiments must be conducted to identify suitable conditions for crystal formation. However, recent technological developments have increased the number of experiments possible with limited amounts of material, and created automated systems to monitor the progress of experiments and detect crystals as they form. Furthermore, technology has improved our ability to create conditions mimicking those existing inside biological membranes (the structures that separate the cell interior from its surroundings and organise the cell into compartments) greatly simplifying the process of obtaining crystals of proteins that are normally associated with membranes. Such proteins perform key biological functions at the cell surface, enabling cells to recognise one another and to bind biological surfaces, and regulating the traffic of molecules, including other proteins, into and out of the cell. However, membrane proteins are much harder to work with, and hence less well understood, than other protein systems.Here we request funds to purchase equipment that will transform our ability to grow crystals, and obtain structures, of a range of biologically interesting but technically challenging targets. We will create a state-of-the-art Facility to exploit recent successes producing proteins and protein assemblies in the quantities necessary for crystallisation. Specifically, we wish to purchase: i) a robot to set up crystallisation experiments in conditions replicating the membrane environment; ii) an automated system to house the numbers of crystallisation experiments made possible by robotic systems working on small scales, and that will monitor their progress without human intervention; and iii) a complete crystallisation facility, including a robot to set up experiments and a microscope to inspect the results, maintained in a controlled, oxygen-free, environment. We will use this equipment to obtain structures of a number of biological molecules and assemblies including: the machinery controlling protein movement across membranes; the surface proteins of the human red blood cell that determine blood group, surface proteins from disease-causing bacteria that enable them to bind human cells; giant molecular machines synthesising drugs and antibiotics; the protein assembly by which cells carry out the instructions contained within genes; artificial proteins that carry electrons; and a wide range of proteins, involved in processes from bacterial antibiotic resistance to conversion of carbon dioxide into liquid fuels, that only function when oxygen is absent. Through our strong links to other local Universities our Facility, which will be unique within the region, will be open to researchers across the South West and South Wales, and will provide cutting edge instrumentation on which to provide the next generation of scientists with skills essential to the UK science and technology base.
了解生命分子的功能需要了解它们的三维结构。在单个原子或接近单个原子的水平上观察生命的组成部分(蛋白质和DNA)是如何组装的,使我们能够理解它们如何驱动为活细胞提供动力和维持生命的化学反应,以及它们如何组织成更复杂的结构,形成细胞和组织的基础。详细的结构知识可以解释特定的改变如何影响功能,例如特定分子的变化与疾病有关,或者生物系统如何被设计以实现有用的功能,例如制造新药或将二氧化碳转化为液体燃料。大多数生物分子的结构都来自于将纯材料的有序晶体暴露于X射线的实验。这种方法的成功依赖于诱导晶体的形成。不幸的是,对于许多有趣和重要的生物分子,这仍然非常困难,必须进行大量的实验来确定晶体形成的合适条件。然而,最近的技术发展增加了使用有限数量材料的实验数量,并创建了自动化系统来监控实验的进展并在晶体形成时检测晶体。此外,技术提高了我们创造模拟生物膜内部存在的条件的能力(将细胞内部与周围环境分离并将细胞组织成隔室的结构),大大简化了获得通常与膜相关的蛋白质晶体的过程。这些蛋白质在细胞表面执行关键的生物学功能,使细胞能够相互识别并结合生物表面,并调节分子(包括其他蛋白质)进出细胞的运输。然而,膜蛋白比其他蛋白质系统更难处理,因此了解得更少。在这里,我们请求资金购买设备,以改变我们生长晶体的能力,并获得一系列生物学上有趣但技术上具有挑战性的目标的结构。我们将建立一个最先进的设施,利用最近的成功生产蛋白质和蛋白质组装的结晶所需的数量。具体而言,我们希望购买:i)在复制膜环境的条件下设置结晶实验的机器人; ii)容纳由在小规模上工作的机器人系统实现的结晶实验的数量的自动化系统,并且该自动化系统将在没有人为干预的情况下监测其进展;和iii)完整的结晶设备,包括用于设置实验的机器人和用于检查结果的显微镜,保持在受控的无氧环境中。我们将利用这一设备获得一些生物分子和组装体的结构,包括:控制蛋白质跨膜运动的机制;决定血型的人类红细胞表面蛋白质;使它们能够结合人类细胞的致病细菌的表面蛋白质;合成药物和抗生素的巨大分子机器;细胞执行基因指令的蛋白质组合;携带电子的人工蛋白质;以及一系列蛋白质,涉及从细菌抗生素抗性到二氧化碳转化为液体燃料的过程,只有在没有氧气的情况下才起作用。通过我们与当地其他大学的紧密联系,我们的设施将在该地区独一无二,将向西南和南威尔士的研究人员开放,并将提供尖端仪器,为下一代科学家提供英国科学技术基础所必需的技能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resistance to the "last resort" antibiotic colistin: a single-zinc mechanism for phosphointermediate formation in MCR enzymes.
  • DOI:
    10.1039/d0cc02520h
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Emily Lythell;R. Suardíaz;P. Hinchliffe;Chonnikan Hanpaibool;Surawit Visitsatthawong;Sofia Oliveira;Eric J. M. Lang;Panida Surawatanawong;V. Lee;T. Rungrotmongkol;Natalie Fey;J. Spencer;A. Mulholland
  • 通讯作者:
    Emily Lythell;R. Suardíaz;P. Hinchliffe;Chonnikan Hanpaibool;Surawit Visitsatthawong;Sofia Oliveira;Eric J. M. Lang;Panida Surawatanawong;V. Lee;T. Rungrotmongkol;Natalie Fey;J. Spencer;A. Mulholland
The Role of Cytochrome P450 AbyV in the Final Stages of Abyssomicin C Biosynthesis
细胞色素 P450 AbyV 在 Abyssomicin C 生物合成最后阶段的作用
  • DOI:
    10.1002/ange.202213053
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Devine A
  • 通讯作者:
    Devine A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Collinson其他文献

Single-molecule fluorescence: Elucidating ATP driven protein transport in the sec complex
  • DOI:
    10.1016/j.bpj.2022.11.482
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Joel A. Crossley;Tomas Fessl;Ian Collinson;Roman Tuma;Sheena E. Radford
  • 通讯作者:
    Sheena E. Radford
The bacterial <em>secretosome</em> for bacterial envelope biogenesis
  • DOI:
    10.1016/j.bpj.2022.11.2431
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Sara Alvira;Dan Watkins;Sophie Williams;Ian Collinson
  • 通讯作者:
    Ian Collinson

Ian Collinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Collinson', 18)}}的其他基金

Structure, Dynamics and Activity of the Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Hijacking the Sec machinery in bacterial warfare
在细菌战中劫持安全部机器
  • 批准号:
    BB/V001531/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Dynamic allostery of Sec machinery in protein transport and folding
蛋白质运输和折叠中Sec机械的动态变构
  • 批准号:
    BB/T006889/1
  • 财政年份:
    2020
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
The Bacterial Secretosome
细菌分泌体
  • 批准号:
    BB/S008349/1
  • 财政年份:
    2019
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Deciphering the allosteric mechanism of protein translocation through membranes
破译蛋白质跨膜易位的变构机制
  • 批准号:
    BB/N015126/1
  • 财政年份:
    2016
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Understanding the Mechanism of Membrane Protein Insertion
了解膜蛋白插入的机制
  • 批准号:
    BB/M003604/1
  • 财政年份:
    2014
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Ensemble and single molecule analysis of protein translocation
蛋白质易位的整体和单分子分析
  • 批准号:
    BB/I008675/1
  • 财政年份:
    2012
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
A biochemical and biophysical analysis of a ubiquitous protein translocation apparatus
普遍存在的蛋白质易位装置的生化和生物物理分析
  • 批准号:
    BB/F002343/1
  • 财政年份:
    2008
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Analysis of the of the interaction between the SecY protein translocation complex and its substrate pre-protein
SecY蛋白易位复合物与其底物前蛋白相互作用分析
  • 批准号:
    BB/F007248/1
  • 财政年份:
    2007
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant

相似国自然基金

CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
染色体结构维持蛋白1在端粒DNA双链断裂损伤修复中的作用及其机理
  • 批准号:
    31801145
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
典型团簇结构模式随尺度变化的理论计算研究
  • 批准号:
    21043001
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
  • 批准号:
    10402036
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
  • 批准号:
    24K20789
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural and Functional Analysis of Motor Protein-Powered Intraflagellar Transport
运动蛋白驱动的鞭毛内运输的结构和功能分析
  • 批准号:
    24K18106
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Discovery of a cryptic sphingolipid pathway in E.coli - structural and functional analysis.
大肠杆菌中神秘鞘脂途径的发现 - 结构和功能分析。
  • 批准号:
    BB/Y002210/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Research Grant
Computational MultiPhysics Analysis of 3D Structural Damage and Failure
3D 结构损伤和失效的计算多物理场分析
  • 批准号:
    DP240101471
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Discovery Projects
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
  • 批准号:
    2902122
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Studentship
Identifying Predictors of Condom Use
确定安全套使用的预测因素
  • 批准号:
    10821861
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Atomic-scale surface and interface structural analysis of crystal growth process in molten metal
熔融金属中晶体生长过程的原子尺度表面和界面结构分析
  • 批准号:
    23H01850
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structural analysis of LLPS proteins in living human cells by in-cell NMR
通过细胞内 NMR 对活人细胞中的 LLPS 蛋白进行结构分析
  • 批准号:
    23H02416
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structural and copy number variation analysis using adaptive long read sequencing
使用自适应长读测序进行结构和拷贝数变异分析
  • 批准号:
    2886714
  • 财政年份:
    2023
  • 资助金额:
    $ 69.72万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了