Sr3Ru2O7: Quantum Nematic Fluid, Vector Magnetic Field Tuning and Spectroscopic Imaging Scanning Tunneling Microscopy

Sr3Ru2O7:量子向列流体、矢量磁场调谐和光谱成像扫描隧道显微镜

基本信息

  • 批准号:
    EP/F044704/1
  • 负责人:
  • 金额:
    $ 155.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

It has long been known that if you take a collection of particles that feel strong mutual forces and set things up just right, they can form into intriguing and beautiful patterns. Desk toys and children's games using magnetic iron filings as the particles hint at what is possible, while more recently it has been possible to observe rich patterning in liquid crystals using more or less standard optical microscopy. At the forefront of modern research into interacting particles is the study of so-called 'correlated electrons' in some special metals. Here, the interactions are the result of combining electromagnetic forces with a subtle quantum mechanical force known as the 'Pauli' or 'exchange' force. A rich hierachy of pattern formation, sometimes called 'quantum self-organisation' can be imagined in such materials. However, imagining effects like these is much easier than actually discovering and observing them, because they are extremely fragile. To observe them, we need materials that are purer than anything that could be grown even a decade ago, temperatures within a few degrees of absolute zero (-273 degrees celsius) and microscopes that are hundreds of millions of times more powerful than optical ones.Very recently, we have been able to deduce the existence of such quantum mechanical patterning in a special oxide metal, Sr3Ru2O7. To even get this far, we had to work for eight years to grow the highest quality crystals in the world of it. We now have a unique opportunity to investigate and understand exactly how the quantum self-organisation takes place. To profit from this, we have conceived a major research project. First, we have designed a special 'vector magnet' which can produce an enormous magnetic field aligned along any direction that we define, under computer automated control. No magnet of our required specification has ever been built before, but calculations in collaboration with a specialist company show that it can be done. Using this magnet we will be able to map out the properties of the new phenomena, and optimise the conditions for them to occur.As well as helping us to understand something completely new, this study will be combined with work using a second unique piece of equipment, a Spectroscopic Imaging Scanning Tunneling Microscope (SI-STM). This instrument, built by the group of one of us (Seamus Davis), can image the patterns made by electrons with almost unimaginable resolution. It is sensitive to distances much less than the diameter of a single atom, and can yield information that is highly relevant to the new physics that we will study but cannot be obtained by any other experimental technique. Very few materials have good enough surfaces to be studied using SI-STM, but we have established that Sr3Ru2O7 is ideal by performing a 12 month feasibility study.In performing the research that we propose, we will answer some fundamental questions about the 'quantum many-body problem', one of the most important in modern physics, AND advance instrumentation technology (extending the existing SI-STM and building a new one). One might argue that these rewards are sufficient in their own right, but they are not the only reason for doing research like this. In the long term, continuing to advance the electronic technologies that underpin computation and data storage will require us to work with correlated electron materials that are the subject of today's fundamental research. Understanding self-organisation and patterning of the electrons themselves is going to be vital to that larger quest. This is especially true in materials like Sr3Ru2O7 because they are part of a large family of transition metal oxides which are chemically similar and have the promise, long-term, of being linked together to form a technology based on a far richer set of basic physical properties than is available using today's semiconductors.
人们早就知道,如果你收集一组能够感受到强大相互作用力的粒子,并将它们设置得恰到好处,它们就可以形成有趣而美丽的图案。使用磁性铁屑作为粒子的桌面玩具和儿童游戏暗示了什么是可能的,而最近已经可以使用或多或少的标准光学显微镜观察液晶中的丰富图案。现代研究相互作用粒子的最前沿是研究某些特殊金属中所谓的“关联电子”。在这里,相互作用是电磁力与称为“泡利”或“交换”力的微妙量子力学力相结合的结果。在这种材料中,可以想象出一种丰富的模式形成层次,有时被称为“量子自组织”。然而,想象这样的效果比实际发现和观察它们要容易得多,因为它们非常脆弱。为了观察它们,我们需要比十年前生长的任何东西都更纯净的材料,温度在绝对零度(-273摄氏度)以内,显微镜的功能比光学显微镜强数亿倍。最近,我们已经能够推断出这种量子力学图案在一种特殊的氧化物金属Sr 3Ru 2 O 7中的存在。为了走到这一步,我们必须工作八年才能生长出世界上最高质量的晶体。我们现在有一个独特的机会来研究和准确了解量子自组织是如何发生的。为了从中获益,我们构思了一个重大的研究项目。首先,我们设计了一个特殊的“矢量磁铁”,它可以产生一个巨大的磁场,在计算机自动控制下,沿着我们定义的任何方向沿着。以前从未制造过符合我们要求规格的磁体,但与专业公司合作的计算表明可以做到。使用这种磁铁,我们将能够绘制出新现象的特性,并优化它们发生的条件。除了帮助我们了解全新的东西,这项研究还将与使用第二种独特设备的工作相结合,即光谱成像扫描隧道显微镜(SI-STM)。这个仪器是由我们中的一个人(谢默斯·戴维斯)的小组建造的,它可以以几乎难以想象的分辨率成像电子形成的图案。它对远小于单个原子直径的距离敏感,并且可以产生与我们将要研究的新物理学高度相关的信息,但不能通过任何其他实验技术获得。很少有材料有足够好的表面可以用SI-STM进行研究,但我们已经确定Sr 3Ru 2 O 7是理想的,通过执行12个月的可行性研究。在执行我们提出的研究中,我们将回答一些关于“量子多体问题”的基本问题,现代物理学中最重要的问题之一,以及先进的仪器技术(扩展现有的SI-STM并建立一个新的)。有人可能会说,这些奖励本身就足够了,但它们并不是做这样的研究的唯一原因。从长远来看,继续推进支撑计算和数据存储的电子技术将要求我们使用相关电子材料,这是当今基础研究的主题。理解电子自身的自组织和模式对于更大的探索至关重要。在Sr 3Ru 2 O 7这样的材料中尤其如此,因为它们是化学上相似的过渡金属氧化物大家族的一部分,并且有希望长期连接在一起,形成一种基于比使用今天的半导体更丰富的基本物理特性的技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum phase transitions in NbFe 2 and Ca 3 Ru 2 O 7
NbFe 2 和 Ca 3 Ru 2 O 7 中的量子相变
  • DOI:
    10.1002/pssb.200983079
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Duncan W
  • 通讯作者:
    Duncan W
Hall coefficient anomaly in the low-temperature high-field phase of Sr 3 Ru 2 O 7
Sr 3 Ru 2 O 7 低温高场相霍尔系数异常
  • DOI:
    10.1103/physrevb.84.205112
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Borzi R
  • 通讯作者:
    Borzi R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andy MacKenzie其他文献

Andy MacKenzie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andy MacKenzie', 18)}}的其他基金

The Scottish Doctoral Training Centre in Condensed Matter Physics
苏格兰凝聚态物理博士培训中心
  • 批准号:
    EP/G03673X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Training Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
  • 批准号:
    EP/Z000807/1
  • 财政年份:
    2025
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Standard Grant
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Standard Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Continuing Grant
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 155.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了