Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
基本信息
- 批准号:2401351
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symmetries are patterns that repeat or stay the same when certain changes are made, like rotating a shape or reflecting it in a mirror. They are everywhere in nature, from the spirals of a seashell to the orbits of planets around the sun. They also hide behind mathematical objects and the laws of physics. Quantum groups and Lie algebras are tools mathematicians use to study these symmetries. This project is a deep dive into understanding the underlying structure of these patterns, even when they're slightly changed or twisted, and how they influence the behavior of everything around us. The project will also provide research training opportunities for graduate students. In more detail, the PI will develop emerging directions in i-quantum groups arising from quantum symmetric pairs as well as develop applications in various settings of classical types beyond type A. The topics include braid group actions for i-quantum groups; Drinfeld presentations for affine i-quantum groups and twisted Yangians, and applications to W-algebras; character formulas in parabolic categories of modules for finite W-algebras; and categorification of i-quantum groups, and applications to Hecke, Brauer and Schur categories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性是指在进行某些更改时重复或保持不变的模式,例如旋转形状或在镜子中反射它。它们在自然界中无处不在,从贝壳的螺旋到行星围绕太阳的轨道。他们也隐藏在数学对象和物理定律背后。量子群和李代数是数学家用来研究这些对称性的工具。这个项目是深入了解这些模式的底层结构,即使它们略有改变或扭曲,以及它们如何影响我们周围一切的行为。该项目还将为研究生提供研究培训机会。更详细地说,PI将在量子对称对产生的i-量子群中开发新兴方向,并在A型之外的各种经典类型的设置中开发应用。主要内容包括i-量子群的辫群作用,仿射i-量子群和扭Yangians的Drinfeld表示及其在W-代数中的应用,有限W-代数模的抛物范畴中的特征标公式;和i-量子群的分类,以及对Hecke的应用,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiqiang Wang其他文献
Braid group symmetries on quasi-split ıquantum groups via ıHall algebras
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Weiqiang Wang - 通讯作者:
Weiqiang Wang
Quantum Schur Duality of Affine type C with Three Parameters
三参数仿射C型量子Schur对偶性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Zhaobing Fan;Chun-Ju Lai;Yiqiang Li;Li Luo;Weiqiang Wang;Hideya Watanabe - 通讯作者:
Hideya Watanabe
Fast exact fingerprint indexing based on Compact Binary Minutia Cylinder Codes
基于紧凑二进制细节柱码的快速精确指纹索引
- DOI:
10.1016/j.neucom.2017.10.027 - 发表时间:
2018-01 - 期刊:
- 影响因子:6
- 作者:
Chaochao Bai;Weiqiang Wang;Tong Zhao;Mingqiang Li - 通讯作者:
Mingqiang Li
Investigation on characteristics of tensile damage and microstructure evolution of steel AISI 316L by nonlinear ultrasonic Lamb wave
非线性超声兰姆波研究AISI 316L钢拉伸损伤特征及微观组织演化
- DOI:
10.1016/j.ijpvp.2022.104680 - 发表时间:
2022 - 期刊:
- 影响因子:3
- 作者:
Jianxun Li;Minghang Wang;Haofeng Chen;Pengfei Wang;Weiqiang Wang - 通讯作者:
Weiqiang Wang
Hecke-Clifford Algebras and Spin Hecke Algebras I: The Classical Affine Type
Hecke-Clifford 代数和自旋 Hecke 代数 I:经典仿射类型
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
T A Khongsap;Weiqiang Wang - 通讯作者:
Weiqiang Wang
Weiqiang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiqiang Wang', 18)}}的其他基金
Quantum Symmetric Pairs, Categorification, and Geometry
量子对称对、分类和几何
- 批准号:
2001351 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Canonical Bases, Categorification, and Modular Representations
规范基础、分类和模块化表示
- 批准号:
1702254 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Representation theory and quantum symmetric pairs
表示论和量子对称对
- 批准号:
1405131 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Representations of Lie superalgebras, Hecke algebras and affine algebras
李超代数、赫克代数和仿射代数的表示
- 批准号:
1101268 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conference on Nonassociative Algebra in Action: Past, Present, and Future Perspectives
行动中的非结合代数会议:过去、现在和未来的观点
- 批准号:
1106203 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Summer school and conference on geometric representation theory and extended affine Lie algebras
几何表示理论和扩展仿射李代数暑期学校和会议
- 批准号:
0903278 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Affine algebras, Lie superalgebras, Hecke algebras, and representations
仿射代数、李超代数、赫克代数和表示
- 批准号:
0800280 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Duality between representations of Lie superalgebras and Lie algebras via Kazhdan-Lusztig theory
通过 Kazhdan-Lusztig 理论研究李超代数和李代数表示之间的对偶性
- 批准号:
0500374 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conference on Infinite-Dimensional Aspects of Representation Theory and Applications; Charlottesville, VA; May 2004
表示理论与应用的无限维方面会议;
- 批准号:
0401095 - 财政年份:2004
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Representations of Infinite Dimensional Lie Algebras and the McKay Correspondence
无限维李代数的表示和麦凯对应
- 批准号:
0196434 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
C*-algebras of Groups and Quantum Groups: Rigidity and Structure Theory
群和量子群的 C* 代数:刚性和结构理论
- 批准号:
2155162 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Cluster Algebras, Quantum Groups, and Decorated Character Varieties
簇代数、量子群和修饰字符簇
- 批准号:
2200738 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras, Groups, and Applications to Quantum Information
算子代数、群以及在量子信息中的应用
- 批准号:
1901290 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
- 批准号:
503989-2017 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




