Magnetism at the Edge of Stability Probed with Advanced Muon Spectroscopy
用先进的介子光谱探测稳定边缘的磁性
基本信息
- 批准号:EP/G003092/2
- 负责人:
- 金额:$ 49.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetism in materials is one of the oldest scientific discoveries, but is still far from being completely understood. I am proposing to use new and, as yet, completely unexploited experimental techniques to learn about materials where the magnetic interactions act to make the magnetic state stable; but only just stable! This means that small changes in the environment can cause dramatic changes in the magnetic properties. I propose to investigate these effects with muons. These are subatomic particles that may be implanted into materials where they act as microscopic magnetometers. In a solid, the atoms interact with each other through electrostatic forces between the electrons attached to the atoms. These forces are short range, so an atom is only on speaking terms with it neighbours. Electrons have a property known as spin, which is best thought of as an arrow attached to each electron. At high temperatures the spins on are randomly aligned, but as we reduce the temperature the electrostatic interactions cause the spins to line up with those of their neighbours. Amazingly, short range forces act to make all of the spins in the solid align. From local atoms speaking only to their neighbours, we have created collective action in the form of long-range order. Long-range order is seen throughout nature and the theory of such order explains the clustering of galaxies, the distribution of earthquakes, the spread of disease and even the very existence of the universe itself. A crucial factor in magnetism is the way in which interactions pass information (like line up spins this way'') between atoms. There may be situations where the interactions only act along a line of atoms (one-dimension) or in a plane of atoms (two-dimensions). This dimensionality is at the root of the behaviour of all long-range ordered systems. This is far from being a theoretical abstraction - it is possible to make 1D and 2D materials in the laboratory. Here, molecules are often employed as the building blocks of the materials rather than individual atoms. These molecular magnets are self assembled nanostructures, formed from networks of magnetic metal atoms which are linked together using organic molecules. The great number of organic molecules allow us to make small changes to the structure of magnets leading to tailor made materials with desired properties.Another important class of magnet results when messages sent to an atom conflict, a phenomenon known as frustration . If each atom is receiving conflicting instructions as to which direction is should align, it is not obvious which it will obey. It is therefore difficult to predict the ground state of the system (that is, the state adopted at very low temperatures). The investigation of such systems provide insights into why materials adopt the states that they do. Why should a certain material be a ferromagnet while another stays disordered down to low temperature? We can even gain an insight into why the solid state itself is stable.I propose to carry out research into frustrated and low-dimensional materials using muons. These are a subatomic particle that may be implanted in a material in order to measure the internal magnetic field. Investigations with muons reveal properties invisible to other, more conventional, experimental techniques. Both frustrated and low-dimensional materials tend to exist at the edges of stability, so that small changes in their external environment lead to dramatic changes in their behaviour. This means that experiments where small perturbations are applied to on of these magnets tend to yield much interesting information about their behaviour. New experimental techniques have recently been developed where perturbations may be applied and simultaneous measurements made with muons. These, as yet, have been completely unexploited in front line research and it is their first deployment that forms the basis of my work.
材料中的磁性是最古老的科学发现之一,但仍远未被完全理解。我建议使用新的,而且还完全未开发的实验技术来了解磁相互作用使磁状态稳定的材料;但只是稳定!这意味着环境的微小变化可能会导致磁特性的巨大变化。我建议用μ子来研究这些效应。这些是亚原子粒子,可以植入材料中,充当微观磁力计。在固体中,原子通过附着在原子上的电子之间的静电力相互作用。这些力都是短程的,所以原子只能和它的邻居说话。电子具有一种称为自旋的性质,最好把它想象成每个电子上都有一个箭头。在高温下,电子上的自旋是随机排列的,但当我们降低温度时,静电相互作用会使自旋与相邻的自旋排列在一起。令人惊讶的是,短程力的作用使固体中的所有自旋对齐。从局部原子只与它们的邻居说话,我们创造了长程有序形式的集体行动。大自然中到处可见长程有序,这种有序理论解释了星系的聚集、地震的分布、疾病的传播,甚至宇宙本身的存在。磁性的一个关键因素是相互作用在原子之间传递信息的方式(就像这样排列自旋)。可能存在这样的情况,其中相互作用仅沿沿着原子线(一维)或在原子平面(二维)中起作用。这个维度是所有长程有序系统行为的根源。这远不是理论上的抽象-在实验室中制作1D和2D材料是可能的。在这里,分子通常被用作材料的构建块,而不是单个原子。这些分子磁体是自组装的纳米结构,由使用有机分子连接在一起的磁性金属原子网络形成。大量的有机分子使我们能够对磁铁的结构进行微小的改变,从而获得具有所需性能的定制材料。另一类重要的磁铁是当发送到原子的信息发生冲突时产生的,这种现象称为挫折。如果每个原子都收到了关于应该向哪个方向排列的相互冲突的指令,那么它将服从哪个方向是不明显的。因此,很难预测系统的基态(即在非常低的温度下采用的状态)。对这种系统的研究提供了对材料为什么会采用它们所采用的状态的见解。为什么某种材料是铁磁体,而另一种材料在低温下保持无序状态?我们甚至可以深入了解为什么固态本身是稳定的。我建议使用μ子对受抑和低维材料进行研究。这些是一种亚原子粒子,可以植入材料中以测量内部磁场。μ子的研究揭示了其他更传统的实验技术所看不到的性质。受抑材料和低维材料都倾向于存在于稳定的边缘,因此外部环境的微小变化会导致其行为的巨大变化。这意味着,对这些磁体之一施加小扰动的实验往往会产生关于它们行为的许多有趣的信息。最近开发了新的实验技术,可以应用微扰并同时测量μ子。这些,到目前为止,在前线研究中还完全未被利用,这是他们的第一次部署,构成了我工作的基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elucidation of the helical spin structure of FeAs
阐明 FeAs 的螺旋自旋结构
- DOI:10.1103/physrevb.95.064424
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Frawley T
- 通讯作者:Frawley T
Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior
- DOI:10.1103/physrevb.95.024404
- 发表时间:2017-01-05
- 期刊:
- 影响因子:3.7
- 作者:Brambleby, J.;Goddard, P. A.;Manson, J. L.
- 通讯作者:Manson, J. L.
Control of the third dimension in copper-based square-lattice antiferromagnets
- DOI:10.1103/physrevb.93.094430
- 发表时间:2016-03-25
- 期刊:
- 影响因子:3.7
- 作者:Goddard, Paul A.;Singleton, John;Manson, Jamie L.
- 通讯作者:Manson, Jamie L.
Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.
- DOI:10.1002/chem.201503431
- 发表时间:2016-01-26
- 期刊:
- 影响因子:0
- 作者:Baker ML;Lancaster T;Chiesa A;Amoretti G;Baker PJ;Barker C;Blundell SJ;Carretta S;Collison D;Güdel HU;Guidi T;McInnes EJ;Möller JS;Mutka H;Ollivier J;Pratt FL;Santini P;Tuna F;Tregenna-Piggott PL;Vitorica-Yrezabal IJ;Timco GA;Winpenny RE
- 通讯作者:Winpenny RE
Robustness of superconductivity to structural disorder in Sr 0.3 ( NH 2 ) y ( NH 3 ) 1 - y Fe 2 Se 2
Sr 0.3 ( NH 2 ) y ( NH 3 ) 1 - y Fe 2 Se 2 中超导性对结构无序的鲁棒性
- DOI:10.1103/physrevb.92.134517
- 发表时间:2015
- 期刊:
- 影响因子:3.7
- 作者:Foronda F
- 通讯作者:Foronda F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Lancaster其他文献
Brief encounter at the molecular level: what muons tell us about molecule-based magnets
- DOI:
10.1016/j.synthmet.2005.07.200 - 发表时间:
2005-09-20 - 期刊:
- 影响因子:
- 作者:
Stephen J. Blundell;Tom Lancaster;Michael L. Brooks;Francis L. Pratt;Eugenio Coronado;Joése R. Galán-Mascarós;Jamie L. Manson;Cyril Cadiou;Richard E. Winpenny - 通讯作者:
Richard E. Winpenny
Magnetic phase diagram of La$_{2-x}$Sr$_{x}$CoO$_{4}$ revised using muon-spin relaxation
使用μ子自旋弛豫修正La$_{2-x}$Sr$_{x}$CoO$_{4}$的磁相图
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Robert Williams;Fan Xiao;Tom Lancaster;R. Renzi;G. Allodi;S. Bordignon;P. Freeman;F. Pratt;Sean Giblin;J. Möller;S. Blundell;A. Boothroyd;D. Prabhakaran - 通讯作者:
D. Prabhakaran
Probing the magnetic phases in the Ni-V alloy close to the disordered ferromagnetic quantum critical point with μSR
用 μSR 探测靠近无序铁磁量子临界点的 Ni-V 合金中的磁性相
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
A. Schroeder;Ruizhe Wang;Peter J. Baker;F. Pratt;S. Blundell;Tom Lancaster;I. Franke;J. Möller - 通讯作者:
J. Möller
Probing magnetic order and disorder in the one-dimensional molecular spin chains CuF2(pyz) and [Ln(hfac)3(boaDTDA)]n (Ln = Sm, La) using implanted muons
使用植入 μ 子探测一维分子自旋链 CuF2(pyz) 和 [Ln(hfac)3(boaDTDA)]n (Ln = Sm, La) 中的磁序和无序
- DOI:
10.1088/1361-648x/ab2cb6 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Tom Lancaster;B. Huddart;Robert Williams;Fan Xiao;K. J. A. Franke;Peter J. Baker;F. Pratt;S. Blundell;J. A. Schlueter;Michelle Mills;Adam Maahs;Kathryn Preuss - 通讯作者:
Kathryn Preuss
Isotope Effect In Quasi-Two-Dimensional Metal-Organic Antiferromagnets
准二维金属有机反铁磁体中的同位素效应
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Goddard;J. Singleton;C. Maitland;S. Blundell;Tom Lancaster;Peter J. Baker;Ross D. McDonald;Susan Cox;Pinaki Sengupta;J. L. Manson;Kylee A. Funk;J. Schlueter - 通讯作者:
J. Schlueter
Tom Lancaster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Lancaster', 18)}}的其他基金
State-of-the-art magnetometry for quantum matter, functional materials, topological magnets and superconductors
用于量子物质、功能材料、拓扑磁体和超导体的最先进的磁力测量
- 批准号:
EP/V054031/1 - 财政年份:2022
- 资助金额:
$ 49.77万 - 项目类别:
Research Grant
DFT+mu: a step change in muon spectroscopy
DFT mu:μ子光谱的一步改变
- 批准号:
EP/N024028/1 - 财政年份:2016
- 资助金额:
$ 49.77万 - 项目类别:
Research Grant
Magnetism at the Edge of Stability Probed with Advanced Muon Spectroscopy
用先进的介子光谱探测稳定边缘的磁性
- 批准号:
EP/G003092/1 - 财政年份:2008
- 资助金额:
$ 49.77万 - 项目类别:
Fellowship
相似国自然基金
Edge-on型X射线能谱探测器及可重构能谱解析技术研究
- 批准号:61674115
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Standard Grant
Research Infrastructure: KCV EDGE (Equitable and Diverse Grant Ecosystem)
研究基础设施:KCV EDGE(公平且多样化的资助生态系统)
- 批准号:
2345142 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Cooperative Agreement
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Standard Grant
Deep Adder Networks on Edge Devices
边缘设备上的深加法器网络
- 批准号:
FT230100549 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
ARC Future Fellowships
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Fellowship
Open Access Block Award 2024 - Edge Hill University
2024 年开放获取区块奖 - Edge Hill 大学
- 批准号:
EP/Z532307/1 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Research Grant
SBIR Phase I: Novel Self-Closing, Transcatheter, Edge-to-Edge Repair Device to Percutaneously Treat Tricuspid Valve Regurgitation Using Jugular or Femoral Vein Access
SBIR 第一阶段:新型自闭合、经导管、边对边修复装置,利用颈静脉或股静脉通路经皮治疗三尖瓣反流
- 批准号:
2322197 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 49.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




