Matrix and Operator Pencils Network

Matrix 和 Operator Pencil 网络

基本信息

  • 批准号:
    EP/G01387X/1
  • 负责人:
  • 金额:
    $ 15.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Matrix and operator pencils are mathematical problems which arise in many physical sciences, including very old and classical problems like the Cosserat problem in elasticity, as well as problems arising from modern technology, such as how to make an aerodynamically unstable jet fighter flyable by means of a feedback control system or how to keep a plasma stable in a particle accelerator.These systems may be thought of as polynomial equations in which the coefficients are not just real numbers: rather, they are matrices (often so large that just to store them on a computer would be problematic) or more general mathematical objects called `operators'. The polynomial equations have to be `solved' in some sense to determine values of a physical parameter for which a system is stable or unstable, controllable or uncontrollable. The sets of `solutions' of these equations are called `spectra'.There has been independent research on these problems by mathematicians, physicists and engineers at least since the early 1960s, but the three communities have not engaged with each other sufficiently. Mathematicians are often unaware of the newest challenges in applications, while applied scientists have not yet been able to benefit from the recent advances in the study of the spectra of operator pencils and new methods to approximate them. The purpose of this grant is to bring the three communities together, building on some small existing points of contact and a new enthusiasm in the three communities for interdisciplinary research, to hold meetings, to solve outstanding problems, to disseminate their work in the wider scientific community through a website and to establish new research alliances which should outlast the network.The network will enhance the exposure of mathematicians to more realistic and challenging application problems, bring recent new mathematical technologies to bear on engineering problems, and allow all three communities to benefit from and contribute to the great challenge of devising numerical methods and software for matrix and operator pencils with interesting and diverse structural constraints.
矩阵铅笔和算符铅笔是许多物理科学中出现的数学问题,包括非常古老和经典的问题,如弹性力学中的Cosserat问题,以及现代技术产生的问题,如如何通过反馈控制系统使空气动力学不稳定的喷气式战斗机能够飞行,或者如何在粒子加速器中保持等离子体稳定。这些系统可以被认为是多项式方程,其中的系数不仅是实数:相反,它们是矩阵(通常太大,以至于仅仅将它们存储在计算机上就会有问题)或更一般的数学对象,被称为“算子”。多项式方程必须在某种意义上“解”,以确定系统稳定或不稳定、可控或不可控的物理参数的值。这些方程的“解”集合被称为“谱”。至少从20世纪60年代初开始,数学家、物理学家和工程师就已经对这些问题进行了独立的研究,但这三个群体还没有充分地接触到彼此。数学家往往没有意识到应用中的最新挑战,而应用科学家还没有能够从算子铅笔光谱和逼近它们的新方法的研究方面的最新进展中受益。这笔赠款的目的是将三个社区结合在一起,在现有的一些小联络点和三个社区对跨学科研究的新热情的基础上,举行会议,解决悬而未决的问题,通过网站在更广泛的科学界传播他们的工作,并建立新的研究联盟,这些联盟应该比网络更持久。网络将增加数学家接触更现实和更具挑战性的应用问题的机会,将最新的新数学技术应用于工程问题,并使这三个社区都能够从设计具有有趣和多样化结构约束的矩阵和算子铅笔的数值方法和软件的巨大挑战中受益并做出贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectrum of a Feinberg-Zee random hopping matrix
Feinberg-Zee 随机跳频矩阵的频谱
  • DOI:
    10.4171/jst/25
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Chandler-Wilde S
  • 通讯作者:
    Chandler-Wilde S
On the Stability of a Forward-Backward Heat Equation
正向-反向热方程的稳定性
Triple variational principles for self-adjoint operator functions
自伴算子函数的三重变分原理
Coburn's lemma and the finite section method for random Jacobi operators
Coburn 引理和随机雅可比算子的有限截面方法
  • DOI:
    10.1016/j.jfa.2015.09.019
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chandler-Wilde S
  • 通讯作者:
    Chandler-Wilde S
ALGEBRAIC ASPECTS OF SPECTRAL THEORY
谱论的代数方面
  • DOI:
    10.1112/s0025579310001579
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Davies E
  • 通讯作者:
    Davies E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Marletta其他文献

Shooting methods for a PT-symmetric periodic eigenvalue problem
  • DOI:
    10.1007/s11075-010-9443-4
  • 发表时间:
    2011-01-20
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Lidia Aceto;Cecilia Magherini;Marco Marletta
  • 通讯作者:
    Marco Marletta
Some criteria for discreteness of spectrum of half-linear fourth order Sturm–Liouville problem
On the inverse resonance problemfor Jacobi operators—uniqueness and stability
  • DOI:
    10.1007/s11854-012-0020-8
  • 发表时间:
    2012-08-30
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Marco Marletta;S. Naboko;R. Shterenberg;R. Weikard
  • 通讯作者:
    R. Weikard
LCNO Sturm-Liouville problems: computational difficulties and examples
  • DOI:
    10.1007/s002110050094
  • 发表时间:
    1995-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Marco Marletta;John D. Pryce
  • 通讯作者:
    John D. Pryce
Numerical solution of eigenvalue problems for Hamiltonian systems

Marco Marletta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Marletta', 18)}}的其他基金

A new paradigm for spectral localisation of operator pencils and analytic operator-valued functions
算子铅笔谱定位和解析算子值函数的新范式
  • 批准号:
    EP/T000902/1
  • 财政年份:
    2020
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Research Grant
Spectral Problems on Families of Domains and Operator M-functions
域族和算子 M 函数的谱问题
  • 批准号:
    EP/C008324/1
  • 财政年份:
    2006
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Research Grant

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 15.72万
  • 项目类别:
    ARC Future Fellowships
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: 2024 Great Plains Operator Theory Symposium
会议:2024年大平原算子理论研讨会
  • 批准号:
    2400046
  • 财政年份:
    2024
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
  • 批准号:
    2247114
  • 财政年份:
    2023
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
Conference: Virginia Operator Theory and Complex Analysis Meeting
会议:弗吉尼亚算子理论与复分析会议
  • 批准号:
    2327592
  • 财政年份:
    2023
  • 资助金额:
    $ 15.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了