Spectral Problems on Families of Domains and Operator M-functions
域族和算子 M 函数的谱问题
基本信息
- 批准号:EP/C008324/1
- 负责人:
- 金额:$ 16.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In magnetohydrodynamics, in quantum mechanics, in quantum graph theory and in many areas of applied mathematics, the governing equations are so-called elliptic PDEs. These equations are to be valid in some region - called a domain - delimited by a physical boundary, upon which certain boundary conditions must be satisfied. Sometimes the domain is exterior: it is the region surrounding some obstacle. In other cases the presence of cusps and corners on the boundary means that solutions of the PDEs may exhibit `bad behaviour' near the cusps or corners. However, away from the boundary, the solutions are well behaved, and we can imagine that they would satisfy nice regular boundary conditions on an imaginary boundary drawn inside the domain. So how can we describe all the boundary conditions we would have to imagine imposing on these imaginary boundaries to capture all of the possible weird behaviours of the solutions of the PDEs near the real, physical boundary? And what would we do with the results? The first of these questions requires us to develop an abstract theory of boundary value spaces. For the second, we want to develop an abstract theory of a Dirichlet to Neumann map, or M-operator: this is the map which tells us the gradient of the solution whenever we know its values. We want to understand how this map might depend on physical parameters in the equations. Some of these parameters are called eigenparameters and there are critical values of these parameters, called eigenvalues, which describe, e.g., the natural resonant frequencies of the system, or the energies at which it passes from stable to unstable. We want to understand how the M-operators on some unchanging (inner) component of the boundary (say, a smooth obstacle) change as we move the imaginary (outer) boundary towards the real (non-smooth) boundary component, or to infinity; and the effect which this has on the eigenvalues of the system. Most importantly, we want to do all of this for so-called non-selfadjoint problems, where the eigenvalues may be complex.
在磁流体力学、量子力学、量子图论和应用数学的许多领域中,控制方程都是所谓的椭圆偏微分方程。这些方程在某个区域(称为区域)中是有效的,该区域由物理边界限定,在该物理边界上必须满足某些边界条件。有时候,这个领域是外部的:它是围绕着某个障碍物的区域。在其他情况下,边界上尖点和角点的存在意味着偏微分方程的解可能在尖点或角点附近表现出“不良行为”。然而,远离边界,解表现良好,我们可以想象,它们将满足在域内绘制的假想边界上的规则边界条件。那么,我们如何描述所有的边界条件,我们必须想象,强加在这些假想的边界上,以捕捉靠近真实的物理边界的偏微分方程解的所有可能的奇怪行为?我们要拿结果怎么办?第一个问题要求我们发展一个抽象的边值空间理论。对于第二个,我们想发展一个狄利克雷到诺依曼映射的抽象理论,或M-算子:这是一个映射,它告诉我们解的梯度,只要我们知道它的值。我们想知道这个映射是如何依赖于方程中的物理参数的。这些参数中的一些被称为特征参数,并且存在这些参数的临界值,称为特征值,其描述例如,系统的自然共振频率,或系统从稳定状态转变为不稳定状态时的能量。我们想了解当我们把虚(外)边界移向真实的(非光滑的)边界分量或无穷远时,边界的某个不变(内)分量(比如光滑障碍物)上的M算子如何变化;以及这对系统本征值的影响。最重要的是,我们想对所谓的非自伴问题做所有这些,其中特征值可能是复杂的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A simple method of calculating eigenvalues and resonances in domains with infinite regular ends
计算具有无限规则末端的域中特征值和共振的简单方法
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:1.3
- 作者:Levitin Michael
- 通讯作者:Levitin Michael
M -functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems
伴随算子对的闭扩展的 M 函数及其在椭圆边界问题中的应用
- DOI:10.1002/mana.200810740
- 发表时间:2009
- 期刊:
- 影响因子:1
- 作者:Brown B
- 通讯作者:Brown B
Boundary triplets and M -functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices
非自共轭算子的边界三元组和 M 函数,及其在椭圆偏微分方程和块算子矩阵中的应用
- DOI:10.1112/jlms/jdn006
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Brown M
- 通讯作者:Brown M
The abstract Titchmarsh-Weyl M-function for adjoint operator pairs and its relation to the spectrum
伴随算子对的抽象 Titchmarsh-Weyl M 函数及其与谱的关系
- DOI:10.48550/arxiv.0808.3733
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Brown M
- 通讯作者:Brown M
An abstract inverse problem for adjoint pairs of operators
伴随算子对的抽象反问题
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:N/a Hinchcliffe
- 通讯作者:N/a Hinchcliffe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Marletta其他文献
Shooting methods for a PT-symmetric periodic eigenvalue problem
- DOI:
10.1007/s11075-010-9443-4 - 发表时间:
2011-01-20 - 期刊:
- 影响因子:2.000
- 作者:
Lidia Aceto;Cecilia Magherini;Marco Marletta - 通讯作者:
Marco Marletta
On the inverse resonance problemfor Jacobi operators—uniqueness and stability
- DOI:
10.1007/s11854-012-0020-8 - 发表时间:
2012-08-30 - 期刊:
- 影响因子:0.900
- 作者:
Marco Marletta;S. Naboko;R. Shterenberg;R. Weikard - 通讯作者:
R. Weikard
Some criteria for discreteness of spectrum of half-linear fourth order Sturm–Liouville problem
- DOI:
10.1007/s00030-017-0433-2 - 发表时间:
2017-02-14 - 期刊:
- 影响因子:1.200
- 作者:
Pavel Drábek;Komil Kuliev;Marco Marletta - 通讯作者:
Marco Marletta
LCNO Sturm-Liouville problems: computational difficulties and examples
- DOI:
10.1007/s002110050094 - 发表时间:
1995-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Marco Marletta;John D. Pryce - 通讯作者:
John D. Pryce
Numerical solution of eigenvalue problems for Hamiltonian systems
- DOI:
10.1007/bf02521106 - 发表时间:
1994-03-01 - 期刊:
- 影响因子:2.100
- 作者:
Marco Marletta - 通讯作者:
Marco Marletta
Marco Marletta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Marletta', 18)}}的其他基金
A new paradigm for spectral localisation of operator pencils and analytic operator-valued functions
算子铅笔谱定位和解析算子值函数的新范式
- 批准号:
EP/T000902/1 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
Matrix and Operator Pencils Network
Matrix 和 Operator Pencil 网络
- 批准号:
EP/G01387X/1 - 财政年份:2009
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
相似海外基金
Preventive Intervention for Behavior Problems in Infants from High-Risk Families
高危家庭婴儿行为问题的预防性干预
- 批准号:
10379259 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Psychosocial effects of the COVID-19 pandemic: Identifying mental health problems and supporting wellbeing in vulnerable children and families
COVID-19 大流行的心理社会影响:识别心理健康问题并支持弱势儿童和家庭的福祉
- 批准号:
ES/V009427/1 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
Preventive Intervention for Behavior Problems in Infants from High-Risk Families
高危家庭婴儿行为问题的预防性干预
- 批准号:
10611412 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
The effect of self-compassion intervention on mental problems for ICU admission families
自我慈悲干预对ICU入院家属心理问题的影响
- 批准号:
20K10763 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Post Maria Puerto Rican Families Relocated to Florida: A Multisite Study of Alcohol Misuse and Mental Health Problems
玛丽亚后波多黎各家庭搬迁到佛罗里达州:酒精滥用和心理健康问题的多地点研究
- 批准号:
10618891 - 财政年份:2019
- 资助金额:
$ 16.47万 - 项目类别:
Development of screening tool via tablet and care models for psychosocial problems in pediatric cancer patients and their families
通过平板电脑和护理模式开发儿童癌症患者及其家人心理社会问题的筛查工具
- 批准号:
19K10971 - 财政年份:2019
- 资助金额:
$ 16.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Post Maria Puerto Rican Families Relocated to Florida: A Multisite Study of Alcohol Misuse and Mental Health Problems
玛丽亚后波多黎各家庭搬迁到佛罗里达州:酒精滥用和心理健康问题的多地点研究
- 批准号:
10712782 - 财政年份:2019
- 资助金额:
$ 16.47万 - 项目类别:
Post Maria Puerto Rican Families Relocated to Florida: A Multisite Study of Alcohol Misuse and Mental Health Problems
玛丽亚后波多黎各家庭搬迁到佛罗里达州:酒精滥用和心理健康问题的多地点研究
- 批准号:
10597280 - 财政年份:2019
- 资助金额:
$ 16.47万 - 项目类别:
Post Maria Puerto Rican Families Relocated to Florida: A Multisite Study of Alcohol Misuse and Mental Health Problems
玛丽亚后波多黎各家庭搬迁到佛罗里达州:酒精滥用和心理健康问题的多地点研究
- 批准号:
10186560 - 财政年份:2019
- 资助金额:
$ 16.47万 - 项目类别:
Post Maria Puerto Rican Families Relocated to Florida: A Multisite Study of Alcohol Misuse and Mental Health Problems
玛丽亚后波多黎各家庭搬迁到佛罗里达州:酒精滥用和心理健康问题的多地点研究
- 批准号:
10409571 - 财政年份:2019
- 资助金额:
$ 16.47万 - 项目类别: