Markov Chain Monte Carlo Random Effects Modelling in Diffusion MRI: a New Window on Microstructure and White Matter Architecture
扩散 MRI 中的马尔可夫链蒙特卡罗随机效应建模:微观结构和白质结构的新窗口
基本信息
- 批准号:EP/G025452/1
- 负责人:
- 金额:$ 43.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetic resonance imaging (MRI) has revolutionised the way in which we can produce pictures of the brain. MRI can be used to produce pictures of the brain structure by measuring the way in which water can move around in the microscopic structure of the brain tissue.The white matter of the brain consists of long cellular structures that connect different brain regions togther, this can be thought of as the wiring of the brain. Because the water can move more easily along these structures, it is possible to produce images of these connections with a technique called tractography.Tractography is useful in many clinical investigations, most notably in neurosurgical planning. The neurosurgeon aims to remove an abnormal part of the brain whilst leaving these important connections intact. Tractography therefore helps to navigate the neurosurgeon by revealing the location of important pathways with respect to the abnormality to be removed. These techniques can therefore help to improve patient outcomes and reduce post-surgical disability.The challenge however, in applying these techniques is that they have to be used with limited MRI information, because sick patients are unable to tolerate long scans. An MRI scan is digitized and just like an image from a digital camera consists of picture elements or pixels. We refer to these as voxels because the MRI scan has an associated slice thickness.Analysis of MRI scans is usually done on a voxel by voxel basis. This commonly used method therefore treats the signal in each voxel as independant. In this project we will use a method that does not make this assumption but uses information from adjacent or similarly responding voxels. We call this approach information borrowing and achieve this using Bayesian random effects modelling.We aim to apply this approach to improve the accuracy and robustness of tractography thereby providing clinicians with better tools for neurosurgical planning and other clinical investigations. We will also apply these methods in new techniques for measuring the brain microstructure. This latter aim, although ambitious, will provide new markers of tissue structure that are more directly representative of the structure responsible for the functioning of the brain.
磁共振成像 (MRI) 彻底改变了我们生成大脑图像的方式。 MRI 可通过测量水在脑组织微观结构中移动的方式来生成大脑结构的图像。大脑的白质由将不同大脑区域连接在一起的长细胞结构组成,这可以被认为是大脑的线路。由于水可以更容易地沿着这些结构移动,因此可以使用称为纤维束成像的技术生成这些连接的图像。纤维束成像在许多临床研究中很有用,尤其是在神经外科计划中。神经外科医生的目标是切除大脑的异常部分,同时保持这些重要连接完好无损。因此,纤维束成像通过揭示与要去除的异常相关的重要通路的位置来帮助神经外科医生导航。因此,这些技术可以帮助改善患者的治疗效果并减少术后残疾。然而,应用这些技术面临的挑战是,它们必须在有限的 MRI 信息下使用,因为病人无法忍受长时间扫描。 MRI 扫描是数字化的,就像数码相机中的图像由图片元素或像素组成一样。我们将这些称为体素,因为 MRI 扫描具有相关的切片厚度。MRI 扫描的分析通常是在逐个体素的基础上进行的。因此,这种常用的方法将每个体素中的信号视为独立的。在这个项目中,我们将使用一种不做这种假设但使用来自相邻或类似响应体素的信息的方法。我们将这种方法称为信息借用,并使用贝叶斯随机效应建模来实现这一目标。我们的目标是应用这种方法来提高纤维束成像的准确性和鲁棒性,从而为临床医生提供更好的神经外科规划和其他临床研究工具。我们还将把这些方法应用到测量大脑微观结构的新技术中。后一个目标虽然雄心勃勃,但将提供新的组织结构标记,更直接地代表负责大脑功能的结构。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Markov Chain Monte Carlo Random Effects Modeling in Magnetic Resonance Image Processing Using the BRugs Interface to WinBUGS
- DOI:10.18637/jss.v044.i02
- 发表时间:2011-10
- 期刊:
- 影响因子:5.8
- 作者:M. King;F. Calamente;C. Clark;D. Gadian
- 通讯作者:M. King;F. Calamente;C. Clark;D. Gadian
A Bayesian random effects model for enhancing resolution in diffusion MRI.
用于增强扩散 MRI 分辨率的贝叶斯随机效应模型。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Christopher Clark (Author)
- 通讯作者:Christopher Clark (Author)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Clark其他文献
Improving Coherence of Language Model Generation with Latent Semantic State
提高语言模型生成与潜在语义状态的一致性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amanda Askell;Yuntao Bai;Anna Chen;Dawn Drain;Deep Ganguli;T. Henighan;Andy Jones;Benjamin Mann;Nova Dassarma;Nelson El;Zac Hatfield;Danny Hernandez;John Kernion;Kamal Ndousse;Catherine Olsson;Dario Amodei;Tom Brown;J. Clark;Sam Mc;Chris Olah;Jared Kaplan;Nick Ryder;Jared D Subbiah;Prafulla Kaplan;A. Dhariwal;P. Neelakantan;Girish Shyam;Amanda Sastry;Sandhini Askell;Ariel Agarwal;Herbert;Gretchen Krueger;R. Child;Aditya Ramesh;Daniel M. Ziegler;Jeffrey Wu;Christopher Winter;Mark Hesse;Eric Chen;Mateusz Sigler;Scott teusz Litwin;Benjamin Gray;Jack Chess;Christopher Clark;Sam Berner;Alec McCandlish;Ilya Radford;Sutskever Dario;Amodei;Joshua Maynez;Shashi Narayan;Bernd Bohnet;Kurt Shuster;Spencer Poff;Moya Chen;Douwe Kiela;Shane Storks;Qiaozi Gao;Yichi Zhang;Joyce Chai;Niket Tandon;Keisuke Sakaguchi;Bhavana Dalvi;Dheeraj Rajagopal;Peter Clark;Michal Guerquin;Kyle Richardson;Eduard H. Hovy;A. Dataset;Rowan Zellers;Ari Holtzman;Matthew E. Peters;Roozbeh Mottaghi;Aniruddha Kembhavi;Ali Farhadi;Chunting Zhou;Graham Neubig;Jiatao Gu;Mona Diab;Francisco Guzmán;Luke Zettlemoyer - 通讯作者:
Luke Zettlemoyer
Integrating Theory and Hands-On Practice using Underwater Robotics in a Multidisciplinary Introductory Engineering Course
在多学科入门工程课程中使用水下机器人将理论与实践相结合
- DOI:
10.18260/1-2--28561 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Nancy K. Lape;L. Bassman;Christopher Clark;A. Dato;Angela M. Lee;Matthew Spencer;E. Spjut;L. Blake - 通讯作者:
L. Blake
The Common Readability Formula & Five Adjusted Readability Formulas for Text Simplification, Medical Documents and Other General Uses
通用可读性公式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Fernando Alva;Louis Martin;M. Bange;Eric Huh;Steven Bird;Ewan Klein;Edward Loper. 2009;M. Brysbaert;Matthias Buchmeier;M. Conrad;Arthur M. Jacobs;Jens Bölte;Andrea Böhl. 2011;Meri Coleman;Ta Lin;Laura Gaeta;Edward Garcia;Valeria Gonzalez;Jasmine Haller;Zachary Keller;Susan Barr;Kristie Had;D. Hansberry;Michael D’Angelo;Arpan V White;Mougnyan Prabhu;Nitin Cox;Agar;Deshmukh. 2018;Quantitative;Matthew Honnibal;Mark Johnson. 2015. An;Caroline Jarrett;Janice ’Ginny’;Read;J. P. Kincaid;R. P. Fishburne;E. Kiwanuka;R. Mehrzad;Adnan Prsic;J. Kue;D. Klemanski;Kristine K Brown;V. Kuperman;Hans Stadthagen;Yinhan Liu;Myle Ott;Naman Goyal;Jingfei Du;Mandar Joshi;Danqi Chen;Omer Levy;Mike Lewis;Matthew E. Peters;Mohit Iyyer Matt Mark Neumann;Matt Gardner;Christopher Clark;L. E. Powell;Emily S. Andersen;H. A. Schwartz;Masoud Rouhizadeh;M. Shardlow;Raheel Nawaz. 2019;Neural;T. Szmuda;C. Özdemir;S. Ali;A. Singh;M. Syed;Pauli Virtanen;R. Gommers;Matt Travis E. Oliphant;Tyler Haberland;David Reddy;Ev;Pearu geni Burovski;Warren Peterson;Weckesser;Jonathan Bright;Stéfan J. van der Walt;Matthew;Joshua Brett;K. J. Wilson;Millman;Nikolay - 通讯作者:
Nikolay
Premature Discontinuation of Ticagrelor among Patients who underwent PCI for ACS in a Large Urban Safety Net Hospital
在大型城市安全网医院因 ACS 接受 PCI 的患者提前停用替格瑞洛
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kamal Shemisa;A. Bhatt;D. Cheeran;Christopher Clark;K. Alvarez;R. Vigen;H. Khalili;Wanpen Vongpatansin;Sandeep R. Das - 通讯作者:
Sandeep R. Das
Local effects of climate change on row crop production and irrigation adoption
气候变化对中耕作物生产和灌溉采用的局部影响
- DOI:
10.1016/j.crm.2021.100293 - 发表时间:
2021 - 期刊:
- 影响因子:4.4
- 作者:
Lixia He;B. English;Christopher Clark;D. Lambert;R. J. Menard;Chad M. Hellwinckel;Stephen Smith;A. Papanicolaou - 通讯作者:
A. Papanicolaou
Christopher Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Clark', 18)}}的其他基金
IRES Track 1: RUI: Monitoring of Marine Life Coastal Habitats via Autonomous Robot Systems
IRES 轨道 1:RUI:通过自主机器人系统监测海洋生物沿海栖息地
- 批准号:
1952616 - 财政年份:2020
- 资助金额:
$ 43.69万 - 项目类别:
Standard Grant
Collaborative Research: Admixture mapping of a hybrid zone to test Tinbergen's emancipation hypothesis
合作研究:混合区的混合绘图以检验丁伯根的解放假说
- 批准号:
1656867 - 财政年份:2017
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
IRES: Intelligent Search and Mapping of Submerged Cultural Heritage Ancient Shipwrecks using Autonomous Underwater Vehicles
IRES:使用自主水下航行器对水下文化遗产古代沉船进行智能搜索和测绘
- 批准号:
1460153 - 财政年份:2015
- 资助金额:
$ 43.69万 - 项目类别:
Standard Grant
RI: Small: RUI: Multi-Robot Systems for Tracking, Monitoring, and Modeling of Periodic Migratory Populations
RI:小型:RUI:用于定期迁徙种群跟踪、监控和建模的多机器人系统
- 批准号:
1423620 - 财政年份:2014
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
Collaborative Research: Acoustic ecology of predator-prey interactions: encoding and decoding alarm calls in multispecies communication networks
合作研究:捕食者-猎物相互作用的声学生态学:多物种通信网络中警报呼叫的编码和解码
- 批准号:
1257286 - 财政年份:2013
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
RI: Small: RUI: Shark Tracking with Multiple Autonomous Underwater Vehicles
RI:小型:RUI:使用多个自主水下航行器跟踪鲨鱼
- 批准号:
1245813 - 财政年份:2012
- 资助金额:
$ 43.69万 - 项目类别:
Standard Grant
RI: Small: RUI: Shark Tracking with Multiple Autonomous Underwater Vehicles
RI:小型:RUI:使用多个自主水下航行器跟踪鲨鱼
- 批准号:
1018894 - 财政年份:2010
- 资助金额:
$ 43.69万 - 项目类别:
Standard Grant
U.S.-Norway Planning Visit: Ice-Edge Autonomous Underwater Vehicles Mapping and Navigation Experiments in the Arctic
美国-挪威计划访问:北极冰缘自主水下航行器测绘和导航实验
- 批准号:
0942973 - 财政年份:2009
- 资助金额:
$ 43.69万 - 项目类别:
Standard Grant
Modelling and Magnetic Resonance Imaging of Human Brain White Matter Architecture
人脑白质结构的建模和磁共振成像
- 批准号:
BB/C006852/1 - 财政年份:2006
- 资助金额:
$ 43.69万 - 项目类别:
Research Grant
The Chemical Synthesis, Self-Assembly, and Facial Crosslinking of Dendrimers for the Study of Ultra-Tough Mimics of Spider Dragline Silk
树枝状聚合物的化学合成、自组装和表面交联,用于研究蜘蛛丝的超坚韧模拟物
- 批准号:
0207086 - 财政年份:2002
- 资助金额:
$ 43.69万 - 项目类别:
Fellowship Award
相似国自然基金
Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
构建互穿网络结构中系带分子(tie chain)和缠结网络协同提升全聚合物太阳能电池力学与光伏性能
- 批准号:52003269
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于Service Chain的数据中心网络资源调度问题研究
- 批准号:61772235
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 43.69万 - 项目类别:
Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
- 批准号:
2311307 - 财政年份:2023
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2022
- 资助金额:
$ 43.69万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
Markov chain Monte Carlo algorithms and locally informed proposal distributions
马尔可夫链蒙特卡罗算法和本地通知的提案分布
- 批准号:
RGPIN-2019-04488 - 财政年份:2022
- 资助金额:
$ 43.69万 - 项目类别:
Discovery Grants Program - Individual
Advanced Markov chain Monte Carlo methods for physically based lighting simulations
用于基于物理的照明模拟的高级马尔可夫链蒙特卡罗方法
- 批准号:
546767-2020 - 财政年份:2022
- 资助金额:
$ 43.69万 - 项目类别:
Postgraduate Scholarships - Doctoral
Robust and scalable Markov chain Monte Carlo for heterogeneous models
适用于异构模型的稳健且可扩展的马尔可夫链蒙特卡罗
- 批准号:
EP/V055380/1 - 财政年份:2022
- 资助金额:
$ 43.69万 - 项目类别:
Research Grant
CAREER: Large-Scale Markov Chain Monte Carlo for Reliable Machine Learning
职业:用于可靠机器学习的大规模马尔可夫链蒙特卡罗
- 批准号:
2046760 - 财政年份:2021
- 资助金额:
$ 43.69万 - 项目类别:
Continuing Grant
Functional Analysis of Markov Chain Monte Carlo algorithms
马尔可夫链蒙特卡罗算法的功能分析
- 批准号:
2597521 - 财政年份:2021
- 资助金额:
$ 43.69万 - 项目类别:
Studentship














{{item.name}}会员




