Quantum Simulation with Low-Dimensional Ultracold Atomic Gases

低维超冷原子气体的量子模拟

基本信息

  • 批准号:
    EP/G026823/1
  • 负责人:
  • 金额:
    $ 62.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

When a gas of atoms is cooled to extremely low temperatures, below one microkelvin, quantum effects emerge and its behaviour changes dramatically. A gas of identical bosons (particles with integer spin) undergoes Bose-Einstein condensation, a phase transition to a new state of matter which was predicted in 1925 but experimentally observed only in 1995. The difference between this fully coherent matter-wave, described by a single macroscopic quantum mechanical wave function, and a classical gas (such as air) is analogous to the difference between the light from a laser and that from a light bulb. Bose-Einstein condensate (BEC) also exhibits superfluidity, the ability to flow without any friction. In contrast, identical fermions (particles with half-integer spin) have to occupy different quantum mechanical states, but can also pair up into composite bosons and undergo a more complicated form of condensation. Such pairing and condensation are at the heart of the phenomenon of superconductivity. Thanks to the relative ease with which we can manipulate them, ultra-cold atomic gases have become extremely useful for studies of these and many other fundamental collective quantum phenomena. For example, precise tools of atomic physics allow us to tune the strength of the interactions between the atoms, and to trap them in artificial crystals of different geometries, which are formed by interfering laser beams. We can thus quantum simulate complex many-body Hamiltonians with more flexibility than is available in conventional condensed matter systems. This idea of quantum simulation was first put forward by Feynman, who pointed out that a behaviour of a complex quantum system can be efficiently simulated only by another quantum system, rather than for example using a classical computer. Ultimately we hope that these made to measure quantum systems will allow us to answer many open questions in condensed matter physics, a prominent example being the unsolved puzzle of high-temperature superconductivity (HTSC). This would also allow for a more systematic design of novel materials for practical applications. In this work we will experimentally address several important outstanding questions related to designing and probing of increasingly more intricate Bose and Fermi many-body systems. We will concentrate on low-dimensional gases, which are fascinating because of the increased importance of quantum and thermal fluctuation in reduced dimensionality. Layered two-dimensional systems which we will study are also particularly interesting because of their structural similarity to HTSC materials. We will also work on the development of interferometric methods which allow direct access to the phase of the many-body wave function, thus offering a powerful probe of the complex correlations among the particles. Finally, we will explore new ways to introduce long-range interactions in atomic gases, an essential missing ingredient for a complete analogy between atomic systems and the electron gases which interact via the long-range Coulomb potential, and investigate the out-of equilibrium many-body physics in systems with rapidly changing Hamiltonians. Going beyond the topics of many-body condensed matter physics and possible applications to material science, we will also explore the possibility to use low-dimensional atomic gases for quantum simulation of outstanding problems in other fields, ranging from statistical to high energy physics. This would establish ultra-cold gases as truly general quantum simulators, in the sense envisioned by Feynman. Our work on dynamically changing Hamiltonians may also be relevant for new approaches to quantum computation. This work will be carried out in the Quantum Gases & Collective Phenomena subgroup within the Atomic, Mesoscopic and Optical Physics (AMOP) group in the University of Cambridge Department Of Physics.
当原子气体被冷却到极低的温度,低于1微开尔文时,量子效应出现,其行为发生了巨大的变化。一种由全同玻色子(具有整数自旋的粒子)组成的气体经历玻色-爱因斯坦凝聚,这是一种相变,在1925年被预测为一种新的物质状态,但直到1995年才被实验观察到。这种完全相干的物质波(由单个宏观量子力学波函数描述)和经典气体(如空气)之间的差异类似于激光和灯泡发出的光之间的差异。玻色-爱因斯坦凝聚(BEC)也表现出超流性,即没有任何摩擦的流动能力。相反,相同的费米子(具有半整数自旋的粒子)必须占据不同的量子力学状态,但也可以配对成复合玻色子并经历更复杂的凝聚形式。这种配对和凝聚是超导现象的核心。由于我们可以相对容易地操纵它们,超冷原子气体对于研究这些和许多其他基本的集体量子现象非常有用。例如,原子物理学的精确工具使我们能够调整原子之间相互作用的强度,并将它们捕获在不同几何形状的人造晶体中,这些晶体由干涉激光束形成。因此,我们可以量子模拟复杂的多体哈密顿比传统的凝聚态系统更灵活。这种量子模拟的想法首先由费曼提出,他指出,一个复杂量子系统的行为只能由另一个量子系统有效地模拟,而不是使用经典计算机。最终,我们希望这些用于测量量子系统的方法将使我们能够回答凝聚态物理学中的许多悬而未决的问题,一个突出的例子是高温超导性(HTSC)的未解之谜。这也将允许为实际应用更系统地设计新材料。在这项工作中,我们将通过实验解决几个重要的悬而未决的问题,设计和探测越来越复杂的玻色和费米多体系统。我们将专注于低维气体,由于量子和热涨落在降维中的重要性增加,这些气体令人着迷。我们将研究的层状二维系统也特别有趣,因为它们与HTSC材料的结构相似。我们还将致力于发展干涉测量方法,这种方法可以直接获得多体波函数的相位,从而为粒子之间的复杂相关性提供强有力的探测。最后,我们将探索在原子气体中引入长程相互作用的新方法,这是原子系统和通过长程库仑势相互作用的电子气体之间完全类比的一个重要缺失成分,并研究具有快速变化的哈密顿量的系统中的平衡多体物理。超越多体凝聚态物理学和材料科学的可能应用的主题,我们还将探索使用低维原子气体量子模拟其他领域的突出问题的可能性,从统计到高能物理。这将使超冷气体成为费曼所设想的真正通用的量子模拟器。我们关于动态变化的哈密顿量的工作也可能与量子计算的新方法有关。这项工作将在剑桥大学物理系原子、介观和光学物理(AMOP)小组的量子气体和集体现象小组中进行。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultracold Bosonic and Fermionic Gases
超冷玻色子和费米子气体
  • DOI:
    10.1016/b978-0-444-53857-4.00004-0
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hadzibabic Z
  • 通讯作者:
    Hadzibabic Z
Two-dimensional Bose fluids: An atomic physics perspective(*)
  • DOI:
    10.1393/ncr/i2011-10066-3
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Hadzibabic, Z.;Dalibard, J.
  • 通讯作者:
    Dalibard, J.
Robust digital holography for ultracold atom trapping.
  • DOI:
    10.1038/srep00721
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Gaunt, Alexander L.;Hadzibabic, Zoran
  • 通讯作者:
    Hadzibabic, Zoran
Measuring the Superfluid Fraction of an Ultracold Atomic Gas
测量超冷原子气体的超流体分数
  • DOI:
    10.48550/arxiv.0910.4767
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cooper N
  • 通讯作者:
    Cooper N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoran Hadzibabic其他文献

Standard Form 298
标准表格 298
  • DOI:
    10.1016/j.physletb.2015.10.005
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    M. Zwierlein;A. Sommer;L. Cheuk;J. Ku;Waseem S Bakr;M. W;Mohit Randeria;M. Ku;K. V. Houcke;Frank Werner;E. Kozik;N. Prokofev;B. Svistunov;M. Ku;A. Sommer;L. Cheuk;A. Schirotzek;M. Zwierlein;Jee Woo Park;Cheng;Ibon Santiago;Tobias G Tiecke;Peyman Ahmadi;Zoran Hadzibabic;Tarik Yefsah;Na;K. Cheng;Jee Woo Wu;Peyman Park;S. Ahmadi;Martin Will;Zwierlein;Ariel;T. Sommer;Mark;J. Ku;W. Zwerger;F. K. V. Houcke;E. Werner;N. Kozik;B. Prokofev;M. Svistunov;A. Ku;L. Sommer;A. Cheuk;M. W. Schirotzek;Jee;W. Park;Lawrence;W. Cheuk;Cheng;M Randeria;W. Zwerger;M. Zwierlein;J. W. Park;Tobias G Tiecke;M. Zwierlein;Van Houcke;K. V. Houcke;Felix Werner;E. Kozik;Nikolay Prokof 'ev;B. Svistunov;M. Ku;A. Sommer;L. Cheuk;A. Schirotzek;Waseem S Bakr;Sebastian Will;C.
  • 通讯作者:
    C.
The cold reality of exclusion
被排斥的冷酷现实
  • DOI:
    10.1038/nphys1770
  • 发表时间:
    2010-09-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic
Experimental and numerical studies of a turbulent cascade in a 3D Bose gas
3D Bose 气体中湍流级联的实验和数值研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤本和也;坪田誠;Christoph Eigen;Jinyi Zhang;Raphael Lopes;Nir Navon;Robert Smith;Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic
When ultracold magnets swirl
当超冷磁体旋转时
  • DOI:
    10.1038/s41567-022-01811-9
  • 发表时间:
    2022-10-31
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic

Zoran Hadzibabic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoran Hadzibabic', 18)}}的其他基金

Quantum Simulators for Fundamental Physics
基础物理量子模拟器
  • 批准号:
    ST/T006056/1
  • 财政年份:
    2021
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Research Grant
NAQUAS: Non-equilibrium dynamics in Atomic systems for QUAntum Simulation.
NAQUAS:用于量子模拟的原子系统中的非平衡动力学。
  • 批准号:
    EP/R043396/1
  • 财政年份:
    2018
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Research Grant
Phase Transitions and Non-equilibrium Dynamics in Homogeneous Quantum Gases
均质量子气体中的相变和非平衡动力学
  • 批准号:
    EP/N011759/1
  • 财政年份:
    2016
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Fellowship
Dynamics of phase transitions to gapped and ungapped quantum states
有隙和无隙量子态的相变动力学
  • 批准号:
    EP/K003615/1
  • 财政年份:
    2013
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Research Grant
Superfluidity in a Two-Dimensional Bose Gas with Tuneable Interactions
具有可调相互作用的二维玻色气体中的超流动性
  • 批准号:
    EP/I010580/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Research Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Low latency abstractions for extreme scale simulation.
用于极端规模模拟的低延迟抽象。
  • 批准号:
    2478907
  • 财政年份:
    2024
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Studentship
Acceleration of High-Fidelity Numerical Simulation for Unsteady Flows with Low Reduced Frequency
低降频非定常流高保真数值模拟加速
  • 批准号:
    23KJ0528
  • 财政年份:
    2023
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultrafast spectroscopy simulation of low-dimensional strongly correlated electron systems using tensor network
使用张量网络的低维强相关电子系统的超快光谱模拟
  • 批准号:
    23K03286
  • 财政年份:
    2023
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Understanding Low-cloud Feedbacks Using Large-eddy Simulation of Spatially Developing Cloud Transitions
职业:利用空间发展云转变的大涡模拟来理解低云反馈
  • 批准号:
    2143276
  • 财政年份:
    2022
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Standard Grant
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2317176
  • 财政年份:
    2022
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Standard Grant
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2138414
  • 财政年份:
    2022
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Standard Grant
Measurement, Simulation, and Mitigation of the Impact of Low-Earth Orbit (LEO) Satellite Constellations on Wide-Field Optical Surveys
测量、模拟和减轻低地球轨道 (LEO) 卫星星座对广域光学测量的影响
  • 批准号:
    2205095
  • 财政年份:
    2022
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Standard Grant
Simulation based surgical training for high risk low resourced procedures using a novel simulator with smart mentoring
使用带有智能指导的新型模拟器,针对高风险、低资源手术进行基于模拟的手术培训
  • 批准号:
    10644160
  • 财政年份:
    2022
  • 资助金额:
    $ 62.55万
  • 项目类别:
Getting more from low-resolution methods: the combination of SAXS and atomistic molecular simulation
从低分辨率方法中获取更多信息:SAXS 与原子分子模拟的结合
  • 批准号:
    2621328
  • 财政年份:
    2021
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Studentship
Laboratory simulation of astrophysical phenomena via interaction between a low-pressure plasma and dynamic liquid metal
通过低压等离子体和动态液态金属之间的相互作用对天体物理现象进行实验室模拟
  • 批准号:
    21K18611
  • 财政年份:
    2021
  • 资助金额:
    $ 62.55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了