Dynamics of phase transitions to gapped and ungapped quantum states

有隙和无隙量子态的相变动力学

基本信息

  • 批准号:
    EP/K003615/1
  • 负责人:
  • 金额:
    $ 97.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Since the production of the first atomic Bose-Einstein condensate in 1995, studies of fundamental many-body physics with ultracold atomic gases have been highly successful. They have resulted in a substantial increase of knowledge about quantum fluids and have addressed questions that have been pondered for decades. Their applicability to a better understanding of real materials will facilitate the controllable design of new functional materials in the future.Up to now most of this research has focused on equilibrium systems; however quantum gases are perhaps even better suited to studying non-equilibrium phenomena. In particular, they have the following advantages: (i) Hamiltonian parameters can be controlled in real time by external means, such as laser light or magnetic fields; (ii) near perfect isolation from the environment makes them ideal for studying intrinsic quantum dynamics; (iii) the relevant timescales are generally favourable (millisecond scale) for time resolved studies. These unique features allow for experimentally realizing quantum quench experiments , during which Hamiltonian parameters, such as the interaction strength, are changed either effectively instantaneously ("instantaneous quench") or slowly ("slow quench"). This leaves the system in a state that is not an eigenstate of the Hamiltonian and which subsequently time-evolves and relaxes into a new (possibly stationary) state through many-body quantum interference effects. Quantum quench experiments are the cornerstones of the scientific understanding of non-equilibrium phenomena because they are conceptually very clean and, in the case of an instantaneous quench, best describable theoretically (even though usually still unsolvable). Consider, for example, an isolated many-body quantum system quenched through a phase transition - there are many questions that are still far from being answered: What determines whether the quantum system will equilibrate? How does the quantum system equilibrate? Does equilibration always lead to thermalisation? What are the roles of temperature and energy gaps in the spectrum? How do different processes like density ordering and the establishment of off-diagonal long-range order compete? Of course, formally the unitary time evolution of an isolated quantum mechanical state is known. However, strong interactions and/or long evolution times make the problem theoretically intractable. Additionally, the presence of dissipation complicates matters and even for weak dissipation only very few special cases, such as Markovian dissipation or harmonic oscillator baths, have been thoroughly studied. For crossing a classical phase transitions into an ordered phase, the dynamics of defect formation has been predicted to obey universal behaviour according to the Kibble-Zurek mechanism but the applicability of the mechanism to quantum systems is highly debated. Therefore, answering the above, fairly generic, questions using well-controlled model systems of ultracold atoms will provide crucial benchmarks for establishing possibly general laws of equilibration and thermalisation, which has been considered one of the Grand Challenges of Physics. In our experiments, we will investigate Bose gases quenched through the BEC phase transition as well as Fermi gases quenched into pseudogap or superfluid phases. For the bosonic part, the establishment of off-diagonal long-range order after a quench will be the prime focus in order to establish a firm and general physical picture of this process. In the Fermi case we will explore the relation between local (pair formation) and global (off-diagonal long-range) order. In the limit of preformed local pairs (molecules) we will be in a unique position to directly compare the results with our own measurements with Bose gases. This will then provide an excellent benchmark for gradually moving (by tuning the interactions) towards the more convolved limit of non-local Cooper pairs.
自1995年第一个玻色-爱因斯坦凝聚态产生以来,超冷原子气体的基础多体物理研究取得了巨大成功。它们极大地增加了人们对量子流体的了解,并解决了人们思考了几十年的问题。它们的适用性,以更好地了解真实的材料将促进可控设计的新功能材料在未来。到目前为止,这方面的研究主要集中在平衡系统,但量子气体可能更适合于研究非平衡现象。特别是,它们具有以下优点:(i)可以通过外部手段(如激光或磁场)在真实的时间内控制哈密顿参数;(ii)与环境近乎完美的隔离使它们成为研究内在量子动力学的理想选择;(iii)相关的时间尺度通常有利于时间分辨研究(毫秒尺度)。这些独特的功能允许实验实现量子淬火实验,在此期间,哈密尔顿参数,如相互作用强度,有效地瞬间(“瞬时淬火”)或缓慢(“缓慢淬火”)改变。这使得系统处于一种不是汉密尔顿本征态的状态,随后通过多体量子干涉效应进行时间演化并松弛到一个新的(可能是静止的)状态。量子猝灭实验是科学理解非平衡现象的基石,因为它们在概念上非常清晰,并且在瞬时猝灭的情况下,理论上最好描述(即使通常仍然无法解决)。例如,考虑一个孤立的多体量子系统通过相变淬灭--有许多问题还远没有得到回答:是什么决定了量子系统是否会平衡?量子系统如何平衡?平衡总是导致热化吗?温度和能隙在光谱中的作用是什么?密度有序化和非对角长程有序的建立等不同过程是如何竞争的?当然,形式上孤立量子力学态的幺正时间演化是已知的。然而,强相互作用和/或长的进化时间使问题在理论上难以解决。此外,耗散的存在使问题复杂化,即使对于弱耗散,也只有很少的特殊情况,如马尔可夫耗散或谐振子浴,得到了彻底的研究。为了将经典相变转变为有序相,缺陷形成的动力学已经被预测为服从根据Kibble-Zurek机制的普遍行为,但是该机制对量子系统的适用性存在很大争议。因此,使用控制良好的超冷原子模型系统来回答上述相当普遍的问题,将为建立可能的平衡和热化的一般定律提供关键的基准,这被认为是物理学的重大挑战之一。在我们的实验中,我们将研究玻色气体淬火通过BEC相变以及费米气体淬火到赝隙或超流相。对于玻色子部分,猝灭后非对角长程有序的建立将是主要焦点,以便建立该过程的牢固且一般的物理图像。在费米的情况下,我们将探讨本地(对形成)和全球(非对角长程)秩序之间的关系。在预先形成的局部对(分子)的限制下,我们将处于一个独特的位置,可以直接将结果与我们自己对玻色气体的测量结果进行比较。然后,这将提供一个很好的基准,用于逐渐(通过调整相互作用)向非局部库珀对的更卷积极限移动。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Connecting Berezinskii-Kosterlitz-Thouless and BEC phase transitions by tuning interactions in a trapped gas
通过调节捕获气体中的相互作用连接 Berezinskii-Kosterlitz-Thouless 和 BEC 相变
  • DOI:
    10.48550/arxiv.1501.02262
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fletcher R
  • 通讯作者:
    Fletcher R
Observing properties of an interacting homogeneous Bose-Einstein condensate: Heisenberg-limited momentum spread, interaction energy, and free-expansion dynamics
  • DOI:
    10.1103/physreva.89.061604
  • 发表时间:
    2014-06-30
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gotlibovych, Igor;Schmidutz, Tobias F.;Hadzibabic, Zoran
  • 通讯作者:
    Hadzibabic, Zoran
Observing Properties of an Interacting Homogeneous Bose--Einstein Condensate: Heisenberg-Limited Momentum Spread, Interaction Energy and Free-Expansion Dynamics
观察相互作用的均质玻色的性质——爱因斯坦凝聚:海森堡有限动量扩散、相互作用能和自由膨胀动力学
  • DOI:
    10.48550/arxiv.1403.7081
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gotlibovych I
  • 通讯作者:
    Gotlibovych I
Stability of a unitary Bose gas
单一玻色气体的稳定性
  • DOI:
    10.48550/arxiv.1307.3193
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fletcher R
  • 通讯作者:
    Fletcher R
A superheated Bose-condensed gas
过热玻色凝聚气体
  • DOI:
    10.1038/nphys2587
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Gaunt A
  • 通讯作者:
    Gaunt A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoran Hadzibabic其他文献

Standard Form 298
标准表格 298
  • DOI:
    10.1016/j.physletb.2015.10.005
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    M. Zwierlein;A. Sommer;L. Cheuk;J. Ku;Waseem S Bakr;M. W;Mohit Randeria;M. Ku;K. V. Houcke;Frank Werner;E. Kozik;N. Prokofev;B. Svistunov;M. Ku;A. Sommer;L. Cheuk;A. Schirotzek;M. Zwierlein;Jee Woo Park;Cheng;Ibon Santiago;Tobias G Tiecke;Peyman Ahmadi;Zoran Hadzibabic;Tarik Yefsah;Na;K. Cheng;Jee Woo Wu;Peyman Park;S. Ahmadi;Martin Will;Zwierlein;Ariel;T. Sommer;Mark;J. Ku;W. Zwerger;F. K. V. Houcke;E. Werner;N. Kozik;B. Prokofev;M. Svistunov;A. Ku;L. Sommer;A. Cheuk;M. W. Schirotzek;Jee;W. Park;Lawrence;W. Cheuk;Cheng;M Randeria;W. Zwerger;M. Zwierlein;J. W. Park;Tobias G Tiecke;M. Zwierlein;Van Houcke;K. V. Houcke;Felix Werner;E. Kozik;Nikolay Prokof 'ev;B. Svistunov;M. Ku;A. Sommer;L. Cheuk;A. Schirotzek;Waseem S Bakr;Sebastian Will;C.
  • 通讯作者:
    C.
The cold reality of exclusion
被排斥的冷酷现实
  • DOI:
    10.1038/nphys1770
  • 发表时间:
    2010-09-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic
Experimental and numerical studies of a turbulent cascade in a 3D Bose gas
3D Bose 气体中湍流级联的实验和数值研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤本和也;坪田誠;Christoph Eigen;Jinyi Zhang;Raphael Lopes;Nir Navon;Robert Smith;Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic
When ultracold magnets swirl
当超冷磁体旋转时
  • DOI:
    10.1038/s41567-022-01811-9
  • 发表时间:
    2022-10-31
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic

Zoran Hadzibabic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoran Hadzibabic', 18)}}的其他基金

Quantum Simulators for Fundamental Physics
基础物理量子模拟器
  • 批准号:
    ST/T006056/1
  • 财政年份:
    2021
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Research Grant
NAQUAS: Non-equilibrium dynamics in Atomic systems for QUAntum Simulation.
NAQUAS:用于量子模拟的原子系统中的非平衡动力学。
  • 批准号:
    EP/R043396/1
  • 财政年份:
    2018
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Research Grant
Phase Transitions and Non-equilibrium Dynamics in Homogeneous Quantum Gases
均质量子气体中的相变和非平衡动力学
  • 批准号:
    EP/N011759/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Fellowship
Superfluidity in a Two-Dimensional Bose Gas with Tuneable Interactions
具有可调相互作用的二维玻色气体中的超流动性
  • 批准号:
    EP/I010580/1
  • 财政年份:
    2011
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Research Grant
Quantum Simulation with Low-Dimensional Ultracold Atomic Gases
低维超冷原子气体的量子模拟
  • 批准号:
    EP/G026823/1
  • 财政年份:
    2009
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Research Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
  • 批准号:
    82372089
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PCBP1和PCBP2调控cGAS的相变和酶活的机制研究
  • 批准号:
    32370928
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
HNRNPK-Xist液液相分离促进X染色体失活
  • 批准号:
    32100547
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Rbm14的相分离在胚胎发育中的功能及作用机理研究
  • 批准号:
    32000556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
蛋白质液-液相变环境中DNA G-四链体结构的形成与功能研究
  • 批准号:
    32000866
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
Hedgehog信号通路与应激颗粒的交互作用及其功能研究
  • 批准号:
    31970755
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular Dynamics Study on Ultrasound Cavitation with Phase Transitions and Chemical Reactions
超声空化相变和化学反应的分子动力学研究
  • 批准号:
    23K03242
  • 财政年份:
    2023
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Information Meets Quantum Matter: Long Range Entanglement and Dynamics Across Quantum Phase Transitions
量子信息遇上量子物质:量子相变的长程纠缠和动力学
  • 批准号:
    2138905
  • 财政年份:
    2022
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Continuing Grant
Dynamics And Entanglement Near Quantum Phase Transitions
近量子相变的动力学和纠缠
  • 批准号:
    CRC-2015-00302
  • 财政年份:
    2021
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Canada Research Chairs
Lattice dynamics and phase transitions in multifunctional oxide nanomaterials studied by ultraviolet Raman spectroscop
紫外拉曼光谱研究多功能氧化物纳米材料的晶格动力学和相变
  • 批准号:
    2104918
  • 财政年份:
    2021
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Standard Grant
Algorithms, Dynamics and Connections with Phase Transitions
算法、动力学以及与相变的联系
  • 批准号:
    EP/V050842/1
  • 财政年份:
    2021
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Research Grant
Dynamics and entanglement near quantum phase transitions
量子相变附近的动力学和纠缠
  • 批准号:
    RGPIN-2016-06667
  • 财政年份:
    2021
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast dynamics of quantum phase transitions
量子相变的超快动力学
  • 批准号:
    RGPIN-2016-04797
  • 财政年份:
    2021
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast dynamics of quantum phase transitions
量子相变的超快动力学
  • 批准号:
    RGPIN-2016-04797
  • 财政年份:
    2020
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and entanglement near quantum phase transitions
量子相变附近的动力学和纠缠
  • 批准号:
    RGPIN-2016-06667
  • 财政年份:
    2020
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and entanglement near quantum phase transitions
量子相变附近的动力学和纠缠
  • 批准号:
    CRC-2015-00302
  • 财政年份:
    2020
  • 资助金额:
    $ 97.66万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了