Imbalanced Data Set Modelling and Classification for Life Threatening/ Safety Critical Applications

针对危及生命/安全关键应用的不平衡数据集建模和分类

基本信息

  • 批准号:
    EP/G026858/1
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Machine learning from imbalanced data sets is related to a broad range of very important problems in many engineering and scientific disciplines, e.g. medical diagnostics, signal detection and machine/material fault detection. Apart from the highly practical value, data learning from imbalanced data sets is also of high theoretical interest. Because the performance metrics used in conventional classifier construction may break down when applied to the imbalanced data sets, this has motivated considerable researches in machine learning communities aimed at a variety of learning methodologies for the imbalanced data setsDespite significant research in machine learning for imbalanced data, there is still a need and/or a lack of general methodologies that are able to deliver the capability of knowledge discovery as demanded by many hugely important applications. For example, it is highly beneficial to discover new noninvasive biological markers from clinical data, which can improve early medical diagnostics results, in order to start early treatment of a cancer. The motivation of the proposed research can be illustrated by another example. In material science, suppose that new materials with exceptional properties, e.g. strength, are required for new mechanical structures, e. g. military vehicles. For this purpose, a sample of experimental trials is performed to obtain a new material together with the measurements of the properties. It is highly desirable that the properties/behaviours could be discovered, by resort of data modelling using a small sample, rather than performing many more unnecessary and very expensive engineering experiments (large sample).This proposal is concerned with the development of a new modelling approach which builds upon the state-of-the-art nonlinear modelling methodologies and is specifically designed for pattern recognition using the imbalanced data sets. The objectives of the research include the modelling, classification, class probability (risk) prediction and knowledge discovery from the imbalanced data sets which are commonly found in many associated applications.
在医学诊断、信号检测和机械/材料故障检测等许多工程和科学学科中,机器学习涉及到许多非常重要的问题。从不平衡数据集中进行数据学习除了具有很高的实用价值外,还具有很高的理论价值。由于传统分类器构造中使用的性能度量在应用于不平衡数据集时可能会崩溃,这促使了机器学习社区中针对不平衡数据集的各种学习方法的大量研究。尽管对不平衡数据的机器学习进行了大量研究,但仍然需要和/或缺乏能够提供许多非常重要的应用所要求的知识发现能力的通用方法。例如,从临床数据中发现新的非侵入性生物标志物,可以提高早期医学诊断结果,从而开始癌症的早期治疗,这是非常有益的。这项研究的动机可以用另一个例子来说明。在材料科学中,假设新的机械结构(如军用车辆)需要具有特殊性能的新材料,例如强度。为此,进行了一系列实验试验以获得一种新材料,并对其性能进行了测量。通过使用小样本的数据建模来发现属性/行为是非常理想的,而不是进行更多不必要和非常昂贵的工程实验(大样本)。这项建议涉及到一种新的建模方法的开发,该方法建立在最先进的非线性建模方法的基础上,并专门设计用于使用不平衡数据集进行模式识别。这项研究的目标包括建模、分类、类别概率(风险)预测和从不平衡数据集中发现知识,这些数据通常存在于许多相关应用中。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Elastic Net Orthogonal Forward Regression Algorithm
一种弹性网正交前向回归算法
  • DOI:
    10.3182/20120711-3-be-2027.00159
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong X
  • 通讯作者:
    Hong X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia Hong其他文献

Effects of capsaicin and carbachol on secretion from transplanted submandibular glands and prevention of duct obstruction
辣椒素和卡巴胆碱对移植颌下腺分泌及预防导管阻塞的影响
  • DOI:
    10.1016/j.ijom.2015.08.818
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Lan Lv;Zhen Wang;Xia Hong;Guang-Yan Yu
  • 通讯作者:
    Guang-Yan Yu
Shape-Designable and Size-Tunable Organic-Inorganic Hybrid Perovskite Micro-Ring Resonator Arrays
形状可设计和尺寸可调的有机-无机杂化钙钛矿微环谐振器阵列
  • DOI:
    10.1002/admt.202000051
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Li Shun-Xin;Xia Hong;Zhang Guo-Ping;Xu Xiao-Lu;Yang Ying;Wang Gong;Sun Hong-Bo
  • 通讯作者:
    Sun Hong-Bo
Concept Lattice-Based Semantic Web Service Ontology Merging
  • DOI:
    10.2991/icacsei.2013.58
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xia Hong
  • 通讯作者:
    Xia Hong
Effects of trichlorfon on progesterone production in cultured human granulosa-lutein cells.
敌百虫对培养的人颗粒叶黄素细胞中孕酮产生的影响。
Rapid and Sensitive Detection of Avermectin Residues in Edible Oils by Magnetic Solid-Phase Extraction Combined with Ultra-High-Pressure Liquid Chromatography-Tandem Mass Spectrometry
磁固相萃取结合超高压液相色谱-串联质谱快速灵敏检测食用油中阿维菌素残留
  • DOI:
    10.1007/s12161-017-0857-7
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhang Hui Xian;Lu Wei;Xia Hong;Gong Yan;Peng Xi Tian;Feng Yu Qi
  • 通讯作者:
    Feng Yu Qi

Xia Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia Hong', 18)}}的其他基金

Collaborative Research: DMREF: Accelerated Discovery of Artificial Multiferroics with Enhanced Magnetoelectric Coupling
合作研究:DMREF:加速发现具有增强磁电耦合的人造多铁性材料
  • 批准号:
    2118828
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Exploring Spin-Orbit Coupling and Correlated Phenomena in Iridate-Based Ferroelectric Transistors and Tunnel Junctions
探索铱基铁电晶体管和隧道结中的自旋轨道耦合和相关现象
  • 批准号:
    1710461
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
CAREER: Interface Engineered Multiferroics and Nanoscale Phase Modulation in Complex Oxide Heterostructures
职业:复杂氧化物异质结构中的界面工程多铁性和纳米级相位调制
  • 批准号:
    1148783
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Using AI and big data to identify a set of biologically validated drug targets for hard-to-treat cancers
使用人工智能和大数据来确定一组经过生物学验证的药物靶点,用于治疗难以治疗的癌症
  • 批准号:
    2886797
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
Chinese language versions of the National Alzheimer's Coordinating Center's Uniform Data Set version 4: a linguistic and cultural adaptation study
国家阿尔茨海默病协调中心统一数据集第4版中文版:语言和文化适应研究
  • 批准号:
    10740587
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
Study of structure formation and galaxy evolution based on big data set from Subaru Telescope
基于斯巴鲁望远镜大数据集的结构形成和星系演化研究
  • 批准号:
    23H05438
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Detailed invesitigation of the light fading process of dyes used for traditional Japanese paintings and application of the data set to online risk assessment tools.
对日本传统绘画所用染料的光褪色过程进行详细研究,并将数据集应用于在线风险评估工具。
  • 批准号:
    23KK0012
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of an open-source reference data set, image repository and interactive training tool for bone damage assessment in inflammatory arthritis
开发用于炎症性关节炎骨损伤评估的开源参考数据集、图像存储库和交互式培训工具
  • 批准号:
    460681
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Miscellaneous Programs
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    22H00796
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of the J-SPEED/Emergency Medical Team Minimum Data Set of Japan
日本J-SPEED/紧急医疗队最低数据集分析
  • 批准号:
    21K09020
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Insights into the complexities of a seismogenic subduction zone: Analysis of a high-quality aftershock data set from the 2017 Tehuantepec (M8.2) offshore Mexico earthquake
洞察孕震俯冲带的复杂性:2017 年墨西哥特万特佩克 (M8.2) 近海地震的高质量余震数据集分析
  • 批准号:
    2054442
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Digitization and Analysis of the Bills of Mortality Data Set
死亡账单数据集的数字化和分析
  • 批准号:
    2120311
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了