Development of novel catalytic structures and thermal regimes for continuous flow reaction chemistry
开发连续流动反应化学的新型催化结构和热机制
基本信息
- 批准号:EP/G027765/1
- 负责人:
- 金额:$ 41.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The synthesis of complex chemical compounds that will lead to the next generation of therapeutic drugs is currently carried out using traditional batch based laboratory methodology. This approach, which can to some extent be automated, typically suffers form inefficient and uncontrollable chemical conversions during the many potential steps in a synthetic process, which in turn leads to poor product yields and a lack of product selectivity. At present, these experimental difficulties can be dealt with by applying a number of remedial clean up steps in the process but whilst these procedures produce the final goal of a pure product, they remain inefficient and wasteful. In an attempt to assess the efficiency of current chemical processes, an E-factor can be calculated which is a measure of the number of kilograms of unwanted by-products generated from a process per kilogram of the desired product produced. For bulk chemicals this E-factor can be as low as 1-5 but in the pharmaceutical industry this value is often much higher at 25-100 due mainly to the increased complexity and batch based processing. Clearly for both environmental and safety reasons there will be substantial benefits in developing more effective approaches to the cleaner production of pharmaceutical chemicals which will still involve complex multi-step reactions. In the research proposed here the applicants plan to bring their experiences in chemical synthesis including immobilized catalysts and microwave heating in small meso (?m) and micron scale flow reactors, which has been demonstrated to offer more effective control over chemical reactions compared to traditional batch chemistry. The work will exploit the unique high surface area:volume chemistries and excellent thermal transfer characteristics available in meso/micro flow systems, to create controllable, non-uniform and time-dependent localised concentrations of reactants, intermediates and products, which will create a new dimension in reaction control somewhat akin to the chemical control in biological systems. The high level of localised reaction control possible using this approach is almost certainly required to achieve a step change in the control of complex, multi-step organic reactions involving multi-functional reagents. The chemistries selected to demonstrate the proposed experimental methodology have been drawn from pharmaceutically relevant reaction types and will include the Curtius rearrangement and Knoevenagel, Suzuki and Heck reactions. In order to achieve scalability of product production (i.e. milligrams to grams) the monoliths in the flow system that support the catalytic process can be made physically larger without losing their integral small pore geometries and volumetric flow can then be increased to generate more material. It has been estimated that, assuming an ideal yield of products for the above named reactions, quantities of product will range from 0.06 to 2 g per hour. The applicants are very conscious that the proposed research will need to be delivered in a format that industry will be able to readily exploit. Accordingly in this project the academic team will be working with a leading supplier of flow-through microwave instrumentation to create equipment that will meet both the quality and quantity of product the pharmaceutical industry is are seeking. We estimate the proposed methodology will not only reduce the E-factor for current drug production by a factor of 10, but will offer new and exciting routes to novel and more controllable synthetic chemistries.
将导致下一代治疗药物的复杂化合物的合成目前是使用传统的基于批次的实验室方法进行的。这种方法在一定程度上可以自动化,但在合成过程中的许多潜在步骤中,通常会遇到低效和无法控制的化学转化,这反过来又导致产品产量低和缺乏产品选择性。目前,这些实验中的困难可以通过在过程中应用一些补救的清理步骤来解决,但尽管这些程序产生了纯产品的最终目标,但它们仍然效率低下和浪费。为了评估当前化学工艺的效率,可以计算E因数,它是每生产一公斤所需产品的过程中产生的不需要的副产品的公斤数的量度。对于散装化学品,这个E系数可以低到1-5,但在制药行业,这个值通常在25-100之间,这主要是由于增加的复杂性和基于批的处理。显然,出于环境和安全两方面的原因,开发更有效的药物化学品清洁生产方法将会有很大的好处,因为这种方法仍将涉及复杂的多步骤反应。在这里提出的研究中,申请人计划带来他们在化学合成方面的经验,包括固定化催化剂和在小型中微米流动反应器中的微波加热,这已经被证明比传统的间歇化学提供了更有效的化学反应控制。这项工作将利用中/微观流动系统中独特的高表面积:体积化学和良好的热传递特性,创建反应物、中间体和产物的可控、非均匀和随时间变化的局部浓度,这将在反应控制方面创造一个新的维度,在某种程度上类似于生物系统中的化学控制。几乎可以肯定的是,使用这种方法可能实现的高水平的局部反应控制,是实现涉及多功能试剂的复杂的、多步骤的有机反应控制的一步改变。为证明所提出的实验方法学而选择的化学方法取自与药物相关的反应类型,将包括Curtius重排以及Knovenagel、Suzuki和Heck反应。为了实现产品生产的可扩展性(即毫克到克),支持催化过程的流动系统中的整体可以在物理上变得更大,而不会失去其完整的小孔几何形状,然后可以增加体积流量以产生更多的材料。据估计,假设上述反应的理想产物产率,每小时的产物量将在0.06至2克之间。申请者非常清楚,拟议中的研究将需要以一种行业能够随时利用的格式进行交付。因此,在这个项目中,学术团队将与一家领先的流动微波仪器供应商合作,创造出符合制药行业所需产品质量和数量的设备。我们估计,所提出的方法不仅将使目前药物生产的E因子降低10倍,而且将为新的和更可控的合成化学提供新的和令人兴奋的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Haswell其他文献
Steve Haswell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Haswell', 18)}}的其他基金
Development of a rapid multiplex Lab on a Chip system for detection of 10 STI pathogens using Biochip Array Technology
开发快速多重芯片实验室系统,利用生物芯片阵列技术检测 10 种 STI 病原体
- 批准号:
TS/I00114X/1 - 财政年份:2010
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant
Commercialisation of Lab-on-a-Chip technology for DNA profiling
DNA 分析芯片实验室技术的商业化
- 批准号:
EP/H007385/1 - 财政年份:2009
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant
Development of a prototype micro fluidic device for the study of cell function within a tissue environment
开发用于研究组织环境内细胞功能的原型微流体装置
- 批准号:
BB/E002722/1 - 财政年份:2007
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant
At scene of crime DNA characterisation
犯罪现场DNA鉴定
- 批准号:
EP/D040930/1 - 财政年份:2006
- 资助金额:
$ 41.83万 - 项目类别:
Research Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Novel Catalytic Reactions by the Combined Use of Chiral Phosphoric Acid and Photochemistry
手性磷酸与光化学结合开发新型催化反应
- 批准号:
23H01965 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of catalytic reactions over novel supported ultra-small cluster catalysts and contribution to CO2 emission reduction
新型负载型超小簇催化剂催化反应的发展及其对二氧化碳减排的贡献
- 批准号:
23K04772 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of MMP14-laden exosomes as a novel anti-SARS-CoV-2 therapy
开发负载 MMP14 的外泌体作为新型抗 SARS-CoV-2 疗法
- 批准号:
10591243 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别:
Cyclin C-CDK8/19 kinases in development and in cancer
发育和癌症中的细胞周期蛋白 C-CDK8/19 激酶
- 批准号:
10579308 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
MYSM1-dependent DNA damage responses in early B cell development
早期 B 细胞发育中 MYSM1 依赖性 DNA 损伤反应
- 批准号:
10527156 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
Development of novel catalytic methodologies
新型催化方法的开发
- 批准号:
RGPIN-2022-04022 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
Discovery Grants Program - Individual
MYSM1-dependent DNA damage responses in early B cell development
早期 B 细胞发育中 MYSM1 依赖性 DNA 损伤反应
- 批准号:
10630928 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
Development of cell-based models for fibrolamellar carcinoma
纤维板层癌细胞模型的开发
- 批准号:
10656539 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
Cyclin C-CDK8/19 kinases in development and in cancer
发育和癌症中的细胞周期蛋白 C-CDK8/19 激酶
- 批准号:
10415467 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
Development of Novel Catalytic C-H Cyclization Processes for Synthesis of Heterocycles
杂环合成的新型催化 C-H 环化工艺的开发
- 批准号:
22K06515 - 财政年份:2022
- 资助金额:
$ 41.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)