Estimation of travel demand models from panel data
根据面板数据估算出行需求模型
基本信息
- 批准号:EP/G033609/1
- 负责人:
- 金额:$ 12.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random utility models (RUM) are now recognised, e.g. by the Nobel prize awards to Daniel McFadden and Daniel Kahnemann, as a state-of-the-art method for the analysis of choice behaviour. The calibration of RUM models requires the use of data containing information on choices made by individual respondents. The initial modelling techniques were largely developed in a revealed preference context where each respondent makes a single choice, also referred to as a cross-sectional situation. However, over the years, more and more use is being made of panel datasets in which multiple choices are observed for each respondent, a situation that arises most prominently in the case of stated choice (SC) data. Such SC datasets are now increasingly used in the estimation of models that are relied on to guide important policy decisions, for example in transport planning practice.The fact that the standard modelling methodology was developed for a cross-sectional context poses an important issue at a time when many applications rely on panel data. Indeed, it is not clear whether the assumptions made in a cross-sectional framework, for example in terms of heterogeneity in sensitivities, apply in a panel context. Furthermore, added complications that exhibit themselves in a panel framework, such as fatigue and learning, are by design not incorporated in the cross-sectional methodology.Some effort has gone into addressing this situation in the existing literature. However, this has largely consisted of simplistic correction approaches or the use of quasi-panel approaches that are simple extensions of cross-sectional approaches making rather stringent assumptions about behaviour in a panel context. These potential shortcomings of the state of the art are a major cause for concern in an age of increasing reliance on panel data. The present project aims to address this.The research will proceed through a review of the current practice and an identification of the methods being used to analyse panel data, including the software that has been developed. Gaps in the existing methods will be identified and methods to fill those gaps will be developed. All the methods will then be put into a general mathematical framework. Software will be written and tested, implementing the general framework, using existing data sets. New data will then be collected, using a web-based survey, to test aspects of the general framework that cannot be addressed with existing data.The timeliness of the work arises from the extensive use that is made in transportation planning practice of panel data and the importance of the policy and investment decisions that are based on it. Particularly the development of innovative policy, required to address pressing issues of traffic congestion and emissions, often relies on the use of SC panel data. Areas other than transport will also benefit from this research. The work will benefit both research and practice, in particular by providing model estimation methods that are clearly described and comprehensive.
随机效用模型(RUM)现在被认为是分析选择行为的最先进方法,例如诺贝尔奖授予丹尼尔麦克法登和丹尼尔卡内曼。RUM模型的校准需要使用包含个体应答者所作选择信息的数据。最初的建模技术主要是在一个显示偏好的情况下,每个受访者做出一个单一的选择,也被称为横截面的情况。然而,多年来,人们越来越多地使用面板数据集,其中每个受访者都有多个选择,这种情况在规定选择(SC)数据中最为突出。这种SC数据集现在越来越多地用于模型的估计,这些模型被用来指导重要的政策决策,例如在交通规划实践中,标准建模方法是为横截面背景开发的,这一事实在许多应用依赖于面板数据的时候提出了一个重要问题。事实上,不清楚在一个跨部门框架中所作的假设,例如在敏感性异质性方面的假设,是否适用于小组背景。此外,增加的并发症,表现出自己在一个小组的框架,如疲劳和学习,是通过设计不纳入横截面的方法。一些努力已经进入解决这种情况在现有的文献。然而,这在很大程度上包括简单化的校正方法或准面板方法的使用,是简单的扩展横截面的方法,使相当严格的假设行为在一个面板的情况下。在越来越依赖面板数据的时代,最新技术的这些潜在缺点是令人担忧的主要原因。本项目旨在解决这一问题,研究将通过审查现行做法和确定用于分析面板数据的方法,包括已开发的软件来进行。将查明现有方法中的差距,并制定填补这些差距的方法。所有的方法将被放入一个通用的数学框架。将使用现有的数据集编写和测试软件,执行总体框架。然后将通过网络调查收集新的数据,以测试总体框架中现有数据无法解决的问题。这项工作的及时性源于在交通规划实践中广泛使用面板数据以及基于面板数据的政策和投资决策的重要性。特别是创新政策的制定,解决交通拥堵和排放等紧迫问题所需的技术,往往依赖于SC面板数据的使用。交通以外的其他领域也将受益于这项研究。这项工作将有利于研究和实践,特别是通过提供明确描述和全面的模型估计方法。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analytic approximations for computing probit choice probabilities
计算概率选择概率的解析近似
- DOI:10.1080/18128602.2012.702794
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Connors R
- 通讯作者:Connors R
Impact of Varying Number of Repeated Choice Observations on Mixed Multinomial Logit Model
不同次数的重复选择观测对混合多项 Logit 模型的影响
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:John Rose
- 通讯作者:John Rose
Approximation Issues in Simulation-Based Estimation of Random Coefficient Models
基于仿真的随机系数模型估计中的逼近问题
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Stephane Hess
- 通讯作者:Stephane Hess
Simple Approaches for Random Utility Modelling with Panel Data
使用面板数据进行随机效用建模的简单方法
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Stephane Hess
- 通讯作者:Stephane Hess
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephane Hess其他文献
Finding your way out: Utility maximization and regret minimization in the presence of opt out alternatives
寻找出路:在存在选择退出替代方案的情况下,效用最大化和遗憾最小化
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Stephane Hess;Matthew J. Beck;C. Chorus - 通讯作者:
C. Chorus
Attribute Selection for a Discrete Choice Experiment Incorporating a Best-Worst Scaling Survey
- DOI:
10.1016/j.jval.2020.10.025 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:
- 作者:
Edward J.D. Webb;David Meads;Yvonne Lynch;Simon Judge;Nicola Randall;Juliet Goldbart;Stuart Meredith;Liz Moulam;Stephane Hess;Janice Murray - 通讯作者:
Janice Murray
Modelling regional accessibility to airports using discrete choice models: An application to a system of regional airports
- DOI:
10.1016/j.tra.2019.12.012 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Angela Stefania Bergantino;Mauro Capurso;Stephane Hess - 通讯作者:
Stephane Hess
Random covariance heterogeneity in discrete choice models
离散选择模型中的随机协方差异质性
- DOI:
10.1007/s11116-009-9255-3 - 发表时间:
2010-01-20 - 期刊:
- 影响因子:3.300
- 作者:
Stephane Hess;Denis Bolduc;John W. Polak - 通讯作者:
John W. Polak
Impact of family in-home quality time on person travel demand
- DOI:
10.1007/s11116-015-9613-2 - 发表时间:
2015-03-28 - 期刊:
- 影响因子:3.300
- 作者:
Goran Vuk;John L. Bowman;Andrew Daly;Stephane Hess - 通讯作者:
Stephane Hess
Stephane Hess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
On-demand nonhormonal male contraception via ADCY10 inhibition
通过 ADCY10 抑制按需非激素男性避孕
- 批准号:
10747153 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Optimization of lead candidates for an on-demand male contraceptive
按需男性避孕药主要候选药物的优化
- 批准号:
10803570 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Modelling the Impact of New Mobility Trends and Technologies on Travel Behaviour and Demand
模拟新的出行趋势和技术对出行行为和需求的影响
- 批准号:
RGPIN-2021-04226 - 财政年份:2022
- 资助金额:
$ 12.06万 - 项目类别:
Discovery Grants Program - Individual
EventGo - Intelligent Rail Service Demand Forecasting for Event-based Travel
EventGo - 基于事件的旅行的智能铁路服务需求预测
- 批准号:
10037294 - 财政年份:2022
- 资助金额:
$ 12.06万 - 项目类别:
Collaborative R&D
Analysis of the impact of COVID-19 on tourism supply and demand by travel and Lodging survey
通过旅游住宿调查分析COVID-19对旅游供需的影响
- 批准号:
21K04300 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EV Assist - Using Travel Demand to Improve EV Customer Experience & Load Balance Chargepoint Utilisation
EV Assist - 利用出行需求改善电动汽车客户体验
- 批准号:
10004190 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Collaborative R&D
Innovative Light ELEctric Vehicles for Active and Digital TravEl (ELEVATE): reducing mobility-related energy demand and carbon emissions
用于主动和数字出行的创新轻型电动汽车 (ELEVATE):减少与出行相关的能源需求和碳排放
- 批准号:
EP/S030700/1 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Research Grant
OC-DETECT,A mHealth for CHWs can facilitate the task-shifting of intake, provide on-demand training, improve communication between CHWs and their supervisors, and support digital-enhanced referral
OC-DETECT,针对社区卫生工作者的移动医疗可以促进接收任务的转移,提供按需培训,改善社区卫生工作者与其主管之间的沟通,并支持数字增强转诊
- 批准号:
10258860 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Modelling the Impact of New Mobility Trends and Technologies on Travel Behaviour and Demand
模拟新的出行趋势和技术对出行行为和需求的影响
- 批准号:
DGECR-2021-00318 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Discovery Launch Supplement
Modelling the Impact of New Mobility Trends and Technologies on Travel Behaviour and Demand
模拟新的出行趋势和技术对出行行为和需求的影响
- 批准号:
RGPIN-2021-04226 - 财政年份:2021
- 资助金额:
$ 12.06万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




