Realising the potential of cryogenic magic-angle spinning nuclear magnetic resonance

实现低温魔角旋转核磁共振的潜力

基本信息

  • 批准号:
    EP/G035695/1
  • 负责人:
  • 金额:
    $ 98.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Progress in the development of new medicines and materials requires knowledge of molecular structures, i.e. the precise arrangment of atoms within molecules. For example, if one knows the precise shape of a malfunctioning protein molecule, one can try to design other molecules which bind to it, so as to prevent it from doing too much damage. Scientists only have a few methods available for finding out about the structures of large molecules like proteins. The most successful method is X-ray crystallography. However, this powerful method requires crystals, which are difficult to produce for many very important biomolecules, especially the type of receptor proteins which sit inside cell membranes ( membrane proteins ).Another promising method is called solid-state NMR (nuclear magnetic resonance), which uses the fact that many of the nuclei at the centres of hydrogen, carbon and nitrogen atoms are weakly magnetic, and behave as small bar magnets. In NMR, radiowaves are used together with a strong magnetic field to probe the interactions between these magnets, allowing one to build up a picture of the molecular structure. Solid-state NMR has been used to obtain structural information from large biomolecules such as membrane proteins, without the need to form crystals. Unfortunately, the NMR signals are very weak. Rather large amounts of sample are often required. This greatly limits the application of this method, since many of the most interesting and important molecules are only available in very small quantities. In the current project we have designed and constructed equipment to perform solid-state NMR at very low temperatures, approaching the boiling point of liquid Helium (4.2 Kelvin, or -269 degrees C). The NMR signal is much stronger at these temperatures. This will allow biologists and chemists to obtain the vital molecular structural information using at least 10 times less sample than was possible before. The project is technically demanding because one must not only keep the sample very cold, but also rotate it very rapidly at a certain angle to the applied magnetic field (this is called magic-angle-spinning, or MAS). This rapid sample rotation is necessary to obtain the most informative NMR signals. Cryogenic magic-angle-spinning NMR is a major technical challenge, and our project combines leading expertise in sample spinning, electronics and cryogenics, in order to overcome these difficulties. In the translation grant we will develop the equipment further so as to allow the samples to be exchanged rapidly and conveniently. We will also invite external users to run their samples on our equipment, in order to develop and strengthen scientific collaborations both within the UK and internationally. We will perform experiments on two different sets of biomolecules produced in Southampton and Leeds, in order to elucidate their molecular structure and functional mechanism. We will also study conducting materials of great technological importance, such as organic conductors, semiconductors and superconductors. The cryoMAS-NMR experiments will allow visualization of the electronic conduction properties with sub-molecular resolution. This will greatly assist the development of new materials with applications in computing, communications, solar energy, and fuel cells.
新药和新材料的开发需要分子结构的知识,即分子中原子的精确排列。例如,如果一个人知道一个发生故障的蛋白质分子的精确形状,他可以尝试设计其他与之结合的分子,以防止它造成太大的损害。科学家们只有几种方法可以用来发现蛋白质等大分子的结构。最成功的方法是X射线晶体学。然而,这种强大的方法需要晶体,这是很难产生许多非常重要的生物分子,特别是受体蛋白质的类型,坐在细胞膜内另一种很有前途的方法是固态核磁共振核磁共振(nuclear magnetic resonance),它利用氢、碳和氮原子中心的许多原子核具有弱磁性的事实,并且表现为小的条形磁体。在NMR中,无线电波与强磁场一起使用,以探测这些磁体之间的相互作用,从而建立分子结构的图像。固态NMR已被用于从大生物分子(如膜蛋白)中获得结构信息,而无需形成晶体。不幸的是,核磁共振信号非常微弱。通常需要相当大量的样品。这极大地限制了这种方法的应用,因为许多最有趣和最重要的分子只能以非常小的数量获得。在目前的项目中,我们设计和建造了在非常低的温度下进行固态NMR的设备,接近液氦的沸点(4.2开尔文,或-269摄氏度)。NMR信号在这些温度下强得多。这将使生物学家和化学家能够使用比以前少至少10倍的样品来获得重要的分子结构信息。该项目在技术上要求很高,因为不仅要保持样品非常冷,而且要以一定的角度旋转样品(这被称为魔角旋转,或MAS)。这种快速的样品旋转对于获得信息量最大的NMR信号是必要的。低温魔角旋转核磁共振是一项重大技术挑战,我们的项目结合了样品旋转、电子学和低温学方面的领先专业知识,以克服这些困难。在翻译补助金中,我们将进一步开发设备,以便快速方便地交换样本。我们还将邀请外部用户在我们的设备上运行他们的样品,以发展和加强英国和国际上的科学合作。我们将对在南安普顿和利兹生产的两组不同的生物分子进行实验,以阐明它们的分子结构和功能机制。我们还将研究具有重要技术意义的导电材料,如有机导体,半导体和超导体。的cryoMAS-NMR实验将允许可视化的电子传导性能与亚分子分辨率。这将极大地帮助开发应用于计算、通信、太阳能和燃料电池的新材料。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor.
解释红视紫红质(G 蛋白偶联受体的功能中间体)中的 13C 化学位移。
  • DOI:
    10.1016/j.bbamem.2009.02.018
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gansmüller A
  • 通讯作者:
    Gansmüller A
Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR spectroscopy.
通过数值模拟和双量子固态核磁共振波谱研究视紫红质的光穿透和光异构化。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm Levitt其他文献

Malcolm Levitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malcolm Levitt', 18)}}的其他基金

NMR over nine orders of magnitude in the magnetic field
磁场中超过九个数量级的核磁共振
  • 批准号:
    EP/V055593/1
  • 财政年份:
    2021
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Atomic and Molecular Endofullerenes: Spins in a box
原子和分子内富勒烯:在盒子中旋转
  • 批准号:
    EP/T004320/1
  • 财政年份:
    2020
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
A Multidisciplinary Research Platform for Nuclear Spins far from Equilibrium
远离平衡核自旋的多学科研究平台
  • 批准号:
    EP/P009980/1
  • 财政年份:
    2017
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Long-lived Nuclear Hyperpolarization of Methyl Groups
甲基的长寿命核超极化
  • 批准号:
    EP/N002482/1
  • 财政年份:
    2015
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Molecular Endofullerenes: Nanoscale dipoles, rotors and oscillators
分子内富勒烯:纳米级偶极子、转子和振荡器
  • 批准号:
    EP/M001962/1
  • 财政年份:
    2014
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Magnetic Resonance of Dihydrogen Endofullerenes
二氢内富勒烯的磁共振
  • 批准号:
    EP/I029451/1
  • 财政年份:
    2011
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Hyperpolarized Nuclear Singlet States
超极化核单线态
  • 批准号:
    EP/I036141/1
  • 财政年份:
    2011
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Multispin Recoupling in Solid-State Nuclear Magnetic Resonance
固态核磁共振中的多自旋重耦合
  • 批准号:
    EP/E022375/1
  • 财政年份:
    2007
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
Long-Lived Spin States in Nuclear Magnetic Resonance
核磁共振中的长寿命自旋态
  • 批准号:
    EP/D079209/1
  • 财政年份:
    2007
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant

相似国自然基金

TRPV1受体在盐敏感性高血压过程中所介导的肾脏保护作用的机理研究
  • 批准号:
    81170243
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
  • 批准号:
    81100181
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
HCN4在心房颤动肺静脉电位形成中作用的研究
  • 批准号:
    81000082
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
  • 批准号:
    30801141
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
感觉神经递质CGRP通过与P物质的相互作用改善心肌缺血的机制探讨
  • 批准号:
    30801213
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
人脐血间充质干细胞成骨潜能亚群的特异性分子标志
  • 批准号:
    30800232
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
脂肪干细胞软骨潜能亚群的特异性分子标志
  • 批准号:
    30772264
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
  • 批准号:
    10109319
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Launchpad
The Rare Earth Potential of the Gascoyne Region of Western Australia
西澳大利亚加斯科因地区的稀土潜力
  • 批准号:
    LP230100173
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Linkage Projects
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Discovery Projects
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Discovery Projects
The effectiveness of public support for high-potential businesses
对高潜力企业的公共支持的有效性
  • 批准号:
    ES/Z50256X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
  • 批准号:
    MR/X008827/1
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Research Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
  • 批准号:
    2348910
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
  • 批准号:
    2401619
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 98.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了