Coalgebraic Logic: Expanding the Scope
代数逻辑:扩大范围
基本信息
- 批准号:EP/G041296/1
- 负责人:
- 金额:$ 46.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
COALGEBRAIC LOGICLogic plays a fundamental role in Computer Science. At the most basiclevel, Boolean logic is used to design the circuits we use every day inour computers. At the higher end, the tasks that computers perform need toconform to specifications expressed in logics suitable for programmers,analysts or even other computational devices.Such specification logics have to be able to express many differentconcepts such as time, knowledge, space, mobility, communication,probability, conditionals etc. Bespoke logics for each of these conceptsexist and are studied under the umbrella of Modal Logic.In any substantial application of Modal Logic to the specification ofa system, the need to combine different logics will arise, each logicaccounting for, eg, one of the aspects mentioned above. The need thenarises to deal with these logics in a uniform and modular way.Not all of these logics have a standard Kripke semantics, but in allcases, the semantics can be considered to be coalgebraic. Coalgebrasgeneralise the standard Kripke semantics of modal logic to encompassnotions such as neighbourhood frames, Markov chains, topologicalspaces, etc.Moreover, Coalgebra is a concept from Category Theory. Category Theoryis an area of mathematics which describes mathematical constructionsin abstract terms that make these constructions available to manydifferent areas of mathematics, logic, and computer science. Inparticular, the category theoretic nature of Coalgebras allows us totackle the modularity problem using category theoreticconstructions. One of the benefits of category theory is that theseconstructions, because of their generality, apply to specificationlanguages and to their semantic models.To summarise, Coalgebraic Logic combines Modal Logic withCoalgebra. This generalises modal logics from Kripke frames tocoalgebras and makes category theoretic methods and constructionsavailable in Modal Logic.EXPANDING THE SCOPECoalgebraic Logic can be traced back to 1997 when the first draft ofMoss's paper with the same title was circulated. Since then, it hasbeen developed by a number of researchers. Just now, Coalgebraic Logicis about to establish itself as an own area. Whereas much of thecurrent work in Coalgebraic Logic aims at exploiting the currentachievements towards more applications, this project starts from thefollowing two observations:First, Coalgebraic logic did not yet make use of many of the importantdevelopments that have taken place in Modal Logic. Two of thesedevelopments are:1) the relationship between Modal Logic and First-Order Logic and2) the uniform treatment of classes of modal logics.Second, there exist many parallel developments in Modal Logic andDomain Theory. Some of the relationships have only recently becomeclear, through the connection of both areas with Coalgebra. Wetherefore plan to3) generalise methods from Modal Logic so that they can be applied tothe logics arising in Domain Theory (this will include the work doneunder 1 and 2 above)
Colgebraic Logiclogic在计算机科学中起着基本作用。在最大的基础上,布尔逻辑用于设计我们每天使用INOUR计算机的电路。在高端,计算机执行的任务需要符合适用于程序员,分析师甚至其他计算设备的逻辑表达的规范。规范逻辑必须能够表达许多不同的概念,例如时间,知识,空间,交流,交流,概率,概率,有条件,条件,条件性等等的逻辑等于这些概念的逻辑和模式下的逻辑效果。系统的规范,结合不同逻辑的需求将出现,每个逻辑审计,例如,例如上述方面之一。当时需要以统一和模块化的方式处理这些逻辑。所有这些逻辑都不具有标准的Kripke语义,但在所有cass中,可以认为语义被认为是calgebraic。 ColgeBraseneralise将模态逻辑的标准kripke语义学到包括邻里框架,马尔可夫链,拓扑间等等诸如诸如诸如邻里框架之类的概念。此外,Calgebra是类别理论的概念。类别理论是一个数学领域,该领域描述了数学构造的抽象术语,这些术语使这些构造可用于数学,逻辑和计算机科学的许多不同领域。围栏内,山结构的类别理论性质使我们使用类别理论构造解决了模块化问题。类别理论的好处之一是,由于其通用性,该构造适用于规范语言和其语义模型。总而言,colgebraic Logic将模态逻辑与Coalgebra结合在一起。这将概括从kripke框架tocoalgebras中进行概括,并在模态逻辑中制造类别理论方法和构造方法。扩展scopecoalgebraic逻辑可以追溯到1997年,当时具有相同标题的莫姆斯的初稿时,可以追溯到1997年。从那时起,它是由许多研究人员开发的。刚才,占地逻辑将成为自己的区域。尽管煤层逻辑中的大部分工作旨在利用当前方面的应用程序,但该项目始于遵循两个观察结果:首先,煤层逻辑尚未利用在模态逻辑中发生的许多重要开发项目。第两个heesdevermations是:1)模态逻辑与一阶逻辑和2)模态逻辑类别的统一处理之间的关系。第二,模态逻辑和域理论中存在许多平行的发展。通过两个地区与山地的联系,一些关系才最近才成为现实。因此,计划对3)从模态逻辑中概括方法,以便可以应用它们在域理论中产生的逻辑(这将包括上面的上限1和2的工作)
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bitopological duality for distributive lattices and Heyting algebras
- DOI:10.1017/s0960129509990302
- 发表时间:2010-01
- 期刊:
- 影响因子:0.5
- 作者:G. Bezhanishvili;N. Bezhanishvili;D. Gabelaia;A. Kurz
- 通讯作者:G. Bezhanishvili;N. Bezhanishvili;D. Gabelaia;A. Kurz
RELATION LIFTING, WITH AN APPLICATION TO THE MANY-VALUED COVER MODALITY
- DOI:10.2168/lmcs-9(4:8)2013
- 发表时间:2013-01-01
- 期刊:
- 影响因子:0.6
- 作者:Bilkova, Marta;Kurz, Alexander;Velebil, Jiri
- 通讯作者:Velebil, Jiri
On a Categorical Framework for Coalgebraic Modal Logic
代数模态逻辑的分类框架
- DOI:10.1016/j.entcs.2014.10.007
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Chen L
- 通讯作者:Chen L
Families of Symmetries as Efficient Models of Resource Binding
作为资源绑定有效模型的对称族
- DOI:10.1016/j.entcs.2010.07.014
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Ciancia V
- 通讯作者:Ciancia V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kurz其他文献
Higher order hadronic and leptonic contributions to the muon g − 2
高阶强子和轻子对 μ 子 g − 2 的贡献
- DOI:
10.1051/epjconf/201611801033 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alexander Kurz;Tao Liu;P. Marquard;A. Smirnov;V. Smirnov;M. Steinhauser - 通讯作者:
M. Steinhauser
Teacher log of students’ opportunity to learn and classroom observation: an initial investigation of convergence
教师记录学生学习和课堂观察的机会:收敛性的初步调查
- DOI:
10.1007/s11092-018-9288-2 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ilona Arnold;Alexander Kurz;L. Reddy - 通讯作者:
L. Reddy
Electron contribution to $(g-2)_mu$ at four loops
四次循环时电子对 $(g-2)_mu$ 的贡献
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Alexander Kurz;Tao Liu;P. Marquard;A. Smirnov;V. Smirnov;M. Steinhauser - 通讯作者:
M. Steinhauser
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
四环阶μ子反常磁矩的逐光校正
- DOI:
10.1103/physrevd.92.073019 - 发表时间:
2015 - 期刊:
- 影响因子:5
- 作者:
Alexander Kurz;Tao Liu;P. Marquard;A. Smirnov;V. Smirnov;M. Steinhauser - 通讯作者:
M. Steinhauser
2008 IEEE International Conference on Data Mining Workshops
2008 IEEE 国际数据挖掘研讨会研讨会
- DOI:
10.1109/icdmw14999.2008 - 发表时间:
2009 - 期刊:
- 影响因子:7.5
- 作者:
Daniel Barbará;C. Domeniconi;Shin Ando;Einoshin Suzuki;Stephen H. Bach;M. Maloof;Mirko Böttcher;M. Spott;Rudolf Kruse;Henrik Grosskreutz;Lei Chang;Tengjiao Wang;Dongqing Yang;Hua Luan;Chen Chen;Xifeng Yan;Feida Zhu;Jiawei Han;Philip S. Yu;Haifeng Chen;Haibin Cheng;Guofei Jiang;K. Yoshihira;Ling Chen;Yiqun Hu;Wolfgang Nejdl;David A. Cieslak;N. Chawla;Graham J. Williams;Peter Christen;Chris H. Q. Ding;Tao Li;Michael I. Jordan;Johannes Fischer;V. Mäkinen;Niki Välimäki;W. Hämäläinen;Matti Nykänen;Andreas Hapfelmeier;J. Schmidt;Marianne Mueller;Stefan Kramer;R. Perneczky;Alexander Kurz;A. Drzezga;Shohei Hido;Yuta Tsuboi;Hisashi Kashima;Masashi Sugiyama;T. Kanamori;Jen;Chu;Ming;Yang Hu;Jingdong Wang;Nenghai Yu;Xian;Yifan Hu;Y. Koren;C. Volinsky - 通讯作者:
C. Volinsky
Alexander Kurz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kurz', 18)}}的其他基金
Coalgebraic Probabilistic Logic over Measurable Spaces via Stone Duality
通过石头对偶性在可测量空间上的代数概率逻辑
- 批准号:
EP/H04714X/1 - 财政年份:2010
- 资助金额:
$ 46.02万 - 项目类别:
Research Grant
Coalgebras, Modal Logic, Stone Duality
代数、模态逻辑、石对偶
- 批准号:
EP/C014014/1 - 财政年份:2006
- 资助金额:
$ 46.02万 - 项目类别:
Research Grant
相似国自然基金
逻辑可扩展的高算力隧穿场效应管器件及模型研究
- 批准号:62304156
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多信道最小项的扩展型可编程逻辑阵列芯片研究
- 批准号:61905083
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
范德瓦尔斯异质结中的可扩展量子比特研究
- 批准号:11904095
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
乙酰化赖氨酸基因线路靶向治疗膀胱癌的分子机制研究
- 批准号:81502684
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
扩展的线性时段不变式的模型检验
- 批准号:61472279
- 批准年份:2014
- 资助金额:78.0 万元
- 项目类别:面上项目
相似海外基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 46.02万 - 项目类别:
Standard Grant
Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
- 批准号:
2401437 - 财政年份:2024
- 资助金额:
$ 46.02万 - 项目类别:
Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 46.02万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 46.02万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 46.02万 - 项目类别:
Standard Grant