Coalgebras, Modal Logic, Stone Duality
代数、模态逻辑、石对偶
基本信息
- 批准号:EP/C014014/1
- 负责人:
- 金额:$ 15.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I.One of the central problems of programming computers is that it isvery difficult to write correct programs or to convince yourself ofthe correctness of some program. One way to tackle this problem is theuse of logic.Let us first take a brief look at logic. We can use logic to (1) make statements about the world, (2) define when a statement holds or does not hold in the world, (3) deduce new statements from given ones using rules of reasoning.`World' can mean the world we live in and logic was originally indeeddeveloped to reason about everyday problems. In mathematics, the worldone reasons about is the world of mathematical objects. Themathematical world is rich enough to model different notions ofcomputation. Mathematical logic thus allows us to devise differentlogics for different models of computation. The logics relevant forthis proposal are known as modal logics.The upshot of this effort should be to make reasoning aboutcomputations completely precise and thus to eliminate the errorshumans tend to make when reasoning about programs.II.In my project I will look at particular models of computation whichare called transition systems. Transition systems consist of statesand relations between states. The idea is that each state representsa given moment of the computation and the relations describe how thecomputation proceeds from on state to another.The project aims at a general theory of logics for transitionsystems. It will establish the relationship between logics andtransition systems via the following detour that allows us to use acertain mathematical theory known as Stone duality. Recent developments suggest using co-algebras to represent transitionsystems. Coalgebras are in a special relationship---calledduality---to algebras. In a similar way as known from solvingequations in school, algebra can be used to formulate reasoningprinciples.In particular, the aims of this proposal are the following. Toassociate to any type of transition system an appropriate logic. Toshow how these logics can be applied to the verification of statementsabout programs. To investigate how certain concepts and tools ofmathematical logic can be adapted to coalgebras and their logics.III.The project will contribute to the theory of coalgebras as a generaltheory of transition systems as developed in the 1990s by manyresearchers. It will also be an important contribution to the recentworks on the connections between (modal) logic andcoalgebras. Coalgebras and modal logic have received attention fromresearchers in different areas of mathematics and computer science andthis research will bring to light new connections them.In a wider context, the project concerns the fundamental relationshipunderlying models of computation on the one hand and logic on theother hand. The development of the theory of coalgebras opens up thepossibility of integrating existing insights and to explore newdirections.
I.编程计算机的主要问题之一是,编写正确的程序或说服您某些程序的正确性是非常困难的。解决这个问题的一种方法是逻辑的使用。让我们首先简要介绍逻辑。我们可以使用逻辑来(1)对世界发表陈述,(2)定义陈述何时成立或不存在于世界,(3)使用推理规则从给定的陈述中推导新陈述。“世界”可以意味着我们生活的世界,逻辑最初确实是为了日常问题而开发的。在数学中,关于世界的原因是数学对象的世界。 theme骨世界足够丰富,可以建模不同的计算概念。因此,数学逻辑使我们能够为不同的计算模型设计不同的logics。相关的逻辑建议被称为模态逻辑。这项工作的结果应该是使对汇票的推理完全精确,从而消除有关programs.ii.ii.ii.i in my项目的propartss.ii.i in My项目时往往会遇到的错误。我将研究所谓的过渡系统的特定计算模型。过渡系统由国家之间的状态和关系组成。这个想法是,每个状态都代表计算的时刻,并且关系描述了该工具如何从状态到另一个状态。它将通过以下弯路建立逻辑和转化系统之间的关系,使我们能够使用称为石头二元性的数学理论。最近的事态发展表明,使用co-elgebras代表过渡系统。煤桥处于特殊关系中 - 称为双重性 - 代数。以与学校的解决方案相似的方式,代数可用于制定推理条件。尤其是,该提案的目的是以下。与任何类型的过渡系统建立联系是适当的逻辑。 Toshow如何将这些逻辑应用于语句验证程序。为了调查某些概念和工具如何适应山地及其逻辑。这也将是对(模态)逻辑和毛金毛之间连接的最近工作的重要贡献。煤炭和模态逻辑已从数学不同领域的研究者和计算机科学领域的研究者中受到关注,这项研究将揭示他们的新联系。在更广泛的背景下,该项目涉及一方面的基本关系在计算的模型和手上的逻辑。煤桥理论的发展开辟了整合现有见解和探索新方向的可能性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Presenting functors on many-sorted varieties and applications
介绍函子的多种分类和应用
- DOI:10.1016/j.ic.2009.11.007
- 发表时间:2010
- 期刊:
- 影响因子:1
- 作者:Kurz A
- 通讯作者:Kurz A
Functorial Coalgebraic Logic: The Case of Many-sorted Varieties
函子代数逻辑:多分类簇的情况
- DOI:10.1016/j.entcs.2008.05.025
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Kurz A
- 通讯作者:Kurz A
On universal algebra over nominal sets
论名义集合上的通用代数
- DOI:10.1017/s0960129509990399
- 发表时间:2010
- 期刊:
- 影响因子:0.5
- 作者:KURZ A
- 通讯作者:KURZ A
Bitopological duality for distributive lattices and Heyting algebras
- DOI:10.1017/s0960129509990302
- 发表时间:2010-01
- 期刊:
- 影响因子:0.5
- 作者:G. Bezhanishvili;N. Bezhanishvili;D. Gabelaia;A. Kurz
- 通讯作者:G. Bezhanishvili;N. Bezhanishvili;D. Gabelaia;A. Kurz
Equational Coalgebraic Logic
方程代数逻辑
- DOI:10.1016/j.entcs.2009.07.097
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Kurz A
- 通讯作者:Kurz A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kurz其他文献
Teacher log of students’ opportunity to learn and classroom observation: an initial investigation of convergence
教师记录学生学习和课堂观察的机会:收敛性的初步调查
- DOI:
10.1007/s11092-018-9288-2 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ilona Arnold;Alexander Kurz;L. Reddy - 通讯作者:
L. Reddy
Higher order hadronic and leptonic contributions to the muon g − 2
高阶强子和轻子对 μ 子 g − 2 的贡献
- DOI:
10.1051/epjconf/201611801033 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alexander Kurz;Tao Liu;P. Marquard;A. Smirnov;V. Smirnov;M. Steinhauser - 通讯作者:
M. Steinhauser
Electron contribution to $(g-2)_mu$ at four loops
四次循环时电子对 $(g-2)_mu$ 的贡献
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Alexander Kurz;Tao Liu;P. Marquard;A. Smirnov;V. Smirnov;M. Steinhauser - 通讯作者:
M. Steinhauser
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
四环阶μ子反常磁矩的逐光校正
- DOI:
10.1103/physrevd.92.073019 - 发表时间:
2015 - 期刊:
- 影响因子:5
- 作者:
Alexander Kurz;Tao Liu;P. Marquard;A. Smirnov;V. Smirnov;M. Steinhauser - 通讯作者:
M. Steinhauser
2008 IEEE International Conference on Data Mining Workshops
2008 IEEE 国际数据挖掘研讨会研讨会
- DOI:
10.1109/icdmw14999.2008 - 发表时间:
2009 - 期刊:
- 影响因子:7.5
- 作者:
Daniel Barbará;C. Domeniconi;Shin Ando;Einoshin Suzuki;Stephen H. Bach;M. Maloof;Mirko Böttcher;M. Spott;Rudolf Kruse;Henrik Grosskreutz;Lei Chang;Tengjiao Wang;Dongqing Yang;Hua Luan;Chen Chen;Xifeng Yan;Feida Zhu;Jiawei Han;Philip S. Yu;Haifeng Chen;Haibin Cheng;Guofei Jiang;K. Yoshihira;Ling Chen;Yiqun Hu;Wolfgang Nejdl;David A. Cieslak;N. Chawla;Graham J. Williams;Peter Christen;Chris H. Q. Ding;Tao Li;Michael I. Jordan;Johannes Fischer;V. Mäkinen;Niki Välimäki;W. Hämäläinen;Matti Nykänen;Andreas Hapfelmeier;J. Schmidt;Marianne Mueller;Stefan Kramer;R. Perneczky;Alexander Kurz;A. Drzezga;Shohei Hido;Yuta Tsuboi;Hisashi Kashima;Masashi Sugiyama;T. Kanamori;Jen;Chu;Ming;Yang Hu;Jingdong Wang;Nenghai Yu;Xian;Yifan Hu;Y. Koren;C. Volinsky - 通讯作者:
C. Volinsky
Alexander Kurz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kurz', 18)}}的其他基金
Coalgebraic Probabilistic Logic over Measurable Spaces via Stone Duality
通过石头对偶性在可测量空间上的代数概率逻辑
- 批准号:
EP/H04714X/1 - 财政年份:2010
- 资助金额:
$ 15.1万 - 项目类别:
Research Grant
Coalgebraic Logic: Expanding the Scope
代数逻辑:扩大范围
- 批准号:
EP/G041296/1 - 财政年份:2009
- 资助金额:
$ 15.1万 - 项目类别:
Research Grant
相似国自然基金
面向航空发动机多模态变工况高性能运行的新型逻辑切换控制系统研究
- 批准号:62303262
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于非交换模糊联结词的模糊模态逻辑及其推理研究
- 批准号:11971417
- 批准年份:2019
- 资助金额:52 万元
- 项目类别:面上项目
基于深度学习的无人机平台可见光/热红外双模态视觉跟踪方法研究
- 批准号:61902420
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
混杂多模态逻辑演化网络分析与调控
- 批准号:61873284
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
基于进化计算与模糊逻辑的多模态数据哈希编码方法与理论研究
- 批准号:61806166
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantitative verification of software families based on coalgebraic modal logic and games
基于联代数模态逻辑和博弈的软件族定量验证
- 批准号:
EP/X019373/1 - 财政年份:2023
- 资助金额:
$ 15.1万 - 项目类别:
Research Grant
Modal Logic and Austro-Polish Philosophy
模态逻辑和奥地利-波兰哲学
- 批准号:
493445604 - 财政年份:2022
- 资助金额:
$ 15.1万 - 项目类别:
Heisenberg Grants
An interdisciplinary study of the dynamics of utterances in social communication in terms of dynamic modal logic
从动态模态逻辑角度对社会传播中话语动态进行跨学科研究
- 批准号:
22H00597 - 财政年份:2022
- 资助金额:
$ 15.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Territories for Modal Logic
模态逻辑的新领域
- 批准号:
446711878 - 财政年份:2021
- 资助金额:
$ 15.1万 - 项目类别:
Independent Junior Research Groups