Developing nanophotonics for quantum coherence and control

开发用于量子相干和控制的纳米光子学

基本信息

  • 批准号:
    EP/G050392/1
  • 负责人:
  • 金额:
    $ 30.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

In the past decade, great progress has been made in the transfer and processing of information using light, with the size of basic components becoming progressively smaller and smaller. This advancement has been driven by a strong desire to reduce energy requirements, increase speed and flexibility, and enhance overall performance in commercial and industrial applications. Current research is now firmly based at the nanoscale, where the newly emerging field of nanophotonics promises high bandwidth, high speed and ultra-small optoelectronic components. While research into the miniaturisation of optical components has experienced substantial development, in recent years the capability of controlling and manipulating simple quantum systems in a wide-range of experimental setups has also been achieved. Controlled devices which are able to exploit quantum mechanical effects will have a big impact on the communications, computing and sensing industries in the context of quantum information processing (QIP). Here, applications such as quantum cryptography, quantum computing and quantum metrology offer far superior performance compared to their non-quantum counterparts for a multitude of tasks.The central aim of my research programme is to investigate the possibilities for a new generation of quantum-controlled devices based on the potential offered by nanophotonics. On-chip nanofabricated systems hold the promise of scalability for QIP applications due to the possibility of high-density integration of components and massive parallelisation. In order to harness this potential of nanophotonics for realising efficient quantum-controlled devices, many issues must first be addressed, both at a theoretical and experimental level. One major problem is the very weak interaction of two single light quanta. If strong nonlinear interactions are made possible at the single-photon level, it will open up the possibility for highly efficient coherent optical processing of quantum information. While various schemes have been proposed to achieve the appropriate rates of nonlinearity, practical issues make them extremely hard to realise experimentally and no clear optimal strategy is known at present. I plan to investigate the possibility of achieving large nonlinearities at the quantum level with on-chip photonic nanostructures. To do this, I will exploit the recently discovered deep sub-wavelength field confinement of surface plasmon polaritons. I intend to develop schemes to generate nonlinear quantum effects and fully characterise their performance using quantum optics tools. Up to now, there have been no studies performed in this new and exciting research direction. The main goal is to identify efficient plasmonic nonlinear optical effects at the quantum level for deployment in applications of quantum coherence and control. There are also other major problems faced in the quest for realising quantum-controlled devices in nanophotonic on-chip systems; the loss of quantum coherence, non-ideal generation and detection, and addressability issues. These problems imply that in the near-future, only small sized on-chip systems with strong quantum features and perhaps larger ones characterised by only weak quantum features will be efficiently generated and controlled in any given experimental setup. I aim to take full advantage of the potential of newly discovered measurement-based techniques for QIP to address these fundamental problems. So far, very little work has been performed in combining the two promising areas of measurement-based QIP and nanophotonic on-chip technology. I will investigate this important combination in order to create a realistic route toward the manufacture of full-scale coherent on-chip QIP. I will collaborate with both theorists and experimentalists in order to achieve the major objectives of this research programme.
在过去的十年中,在利用光进行信息传输和处理方面取得了很大的进展,基本部件的尺寸越来越小。这一进步是由降低能源需求、提高速度和灵活性以及增强商业和工业应用的整体性能的强烈愿望推动的。目前的研究是基于纳米尺度的,新兴的纳米光子学领域有望实现高带宽、高速度和超小型光电元件。虽然对光学元件的量子化的研究已经取得了长足的发展,但近年来,在广泛的实验装置中控制和操纵简单量子系统的能力也已经实现。能够利用量子力学效应的受控设备将在量子信息处理(QIP)的背景下对通信,计算和传感行业产生重大影响。在这里,应用程序,如量子密码学,量子计算和量子计量学提供了远远优于上级性能相比,他们的非量子对应物为众多的tasks.The我的研究计划的中心目标是调查的可能性,为新一代的量子控制设备的基础上提供纳米光子学的潜力。由于组件的高密度集成和大规模并行化的可能性,片上纳米制造系统为QIP应用提供了可扩展性的希望。为了利用纳米光子学的这种潜力来实现有效的量子控制设备,必须首先在理论和实验层面上解决许多问题。一个主要的问题是两个单光量子之间非常弱的相互作用。如果强非线性相互作用在单光子水平上成为可能,它将为量子信息的高效相干光学处理开辟可能性。虽然已经提出了各种方案,以实现适当的非线性率,实际问题使他们非常难以实现实验和目前没有明确的最佳策略是已知的。我计划研究在量子水平上实现大的非线性与芯片上的光子纳米结构的可能性。为此,我将利用最近发现的深亚波长场限制的表面等离子体激元。我打算开发计划,以产生非线性量子效应,并充分利用量子光学工具来验证其性能。到目前为止,还没有在这个新的和令人兴奋的研究方向进行研究。主要目标是在量子水平上识别有效的等离子体非线性光学效应,以用于量子相干和控制的应用。在纳米光子片上系统中实现量子控制器件的过程中还面临其他主要问题;量子相干性的损失,非理想的生成和检测以及可寻址性问题。这些问题意味着,在不久的将来,只有具有强量子特征的小尺寸片上系统,以及可能仅具有弱量子特征的较大系统,才能在任何给定的实验设置中有效地生成和控制。我的目标是充分利用QIP新发现的基于测量的技术的潜力来解决这些基本问题。到目前为止,在结合基于测量的QIP和纳米光子片上技术这两个有前途的领域方面所做的工作很少。我将研究这一重要的组合,以创造一个现实的路线走向制造的全规模一致的片上QIP。我将与理论家和实验家合作,以实现本研究计划的主要目标。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Tame其他文献

Demonstration of Shor’s factoring algorithm for N $$=$$ 21 on IBM quantum processors
在 IBM 量子处理器上针对 N=21 展示肖尔的分解算法
  • DOI:
    10.1038/s41598-021-95973-w
  • 发表时间:
    2021-08-16
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Unathi Skosana;Mark Tame
  • 通讯作者:
    Mark Tame

Mark Tame的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    ARC Future Fellowships
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Standard Grant
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
  • 批准号:
    545932-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting light: from quantum nanophotonics to advanced fabrication
利用光:从量子纳米光子学到先进制造
  • 批准号:
    RGPIN-2018-05192
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Grants Program - Individual
Optically interfacing a single atom tweezer array for quantum photonics
用于量子光子学的单原子镊子阵列的光学接口
  • 批准号:
    21H01011
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了