Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
基本信息
- 批准号:2320265
- 负责人:
- 金额:$ 99.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photons, particles of light, can travel across long distances with very high efficiency, especially when propagating in very low loss fiber-optical cables. Therefore, photons are used as information carriers of choice for optical communication technology that forms the backbone of the internet. Integrated photonic chips - integrated photonics for short - consisting of many micron-scale optical devices, have emerged as an essential technology required to encode information in a photon’s color, polarization, shape, and position. Beyond optical communications, integrated photonics has enabled a wide range of applications with significant societal impact, including environmental monitoring, bio-medical imaging, machine vision, and high-performance computing. These applications crucially rely on the ability to efficiently interface “micro-world” of integrated photonic chips with “macro-world” of optical fibers. In the laboratory setting, this is achieved using bulky, expensive, and high-precision positioners, which renders the system challenging to use in real-world applications. Photonic wire bonding (PWB), the process of permanently attaching an optical fiber to a photonic chip, is ideally suited to overcome this limitation and improve the performance and usability of the integrated photonics. Furthermore, it can also make these systems accessible to many under-resourced communities (e.g. small colleges, high schools) who may not have access to state of the art laboratory equipment. This Major Research Instrumentation (MRI) award is supporting the acquisition of a PWB system by Vanguard Automation. The tool will be placed in a shared clean room facility - Center for Nanoscale Systems at Harvard, member of NNCI network - where it will be available to many academic and industrial users. Therefore, the tool will enable many scientific breakthroughs, stimulate technological advancements and entrepreneurship, and help train a diverse and photonic-savvy workforce. Modern chip-scale photonic systems consist of many optical devices, including waveguides, resonators, modulators, switches, lasers and detectors, realized in a variety of photonic materials and has enabled applications ranging from optical communications and computation on one end, to sensing and precision measurement on the other. The outstanding challenge for integrated photonics is that of efficiently getting light on- and off-chip. Due to the large optical mode mismatch between sub-micron scale on-chip optical waveguides and commercially available optical fibers, featuring optical mode diameters exceeding ten microns, much of the light is lost when light passes from the waveguide to the fiber. This is particularly true for applications that require low temperature operation (e.g. inside cryostat or dilution refrigerator), operation in fluids (e.g. in sensors), scalability (e.g. 10s or 100s devices to be connected at the same time), or robustness to vibrations. Recently, photonic wire bonding, an optical equivalent to electrical wire bonding ubiquitous in electrical circuits, has emerged as a promising technique to create efficient and permanent connections between photonic devices on different platforms, or with fibers or lasers. In this approach, 3-D polymer waveguides are fabricated in situ to bridge the gap between photonic circuits located on different chips, or between the chip and fiber or laser. This technique not only enables scalable, highly efficient, and low loss interface between optical chips and optical fibers, but also allows for the realization of compact hybrid devices that combine different materials. The PWB tool will facilitate successful completion of a large number of ongoing research programs focused on development of new types of chip-scale lasers (including pulsed ones), frequency combs and single-photon sources, for example, and their application in microwave photonics, optical communication and computing, precision measurements of time and distance, environmental monitoring, quantum communication and computation. The tool will also enable new opportunities by the ability to perform long term, stable measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子,光的粒子,可以以非常高的效率长距离传播,特别是在非常低损耗的光纤电缆中传播时。因此,光子被用作构成互联网骨干的光通信技术的首选信息载体。集成光子芯片——简称集成光子学——由许多微米级光学器件组成,已成为编码光子颜色、偏振、形状和位置信息所需的基本技术。除了光通信之外,集成光子学已经实现了具有重大社会影响的广泛应用,包括环境监测,生物医学成像,机器视觉和高性能计算。这些应用至关重要地依赖于有效地将集成光子芯片的“微观世界”与光纤的“宏观世界”连接起来的能力。在实验室环境中,这是通过使用体积庞大、价格昂贵且高精度的定位器来实现的,这使得该系统在实际应用中具有挑战性。光子线键合(PWB)是一种将光纤永久连接到光子芯片上的方法,它非常适合克服这一限制,提高集成光子学的性能和可用性。此外,它还可以使许多资源不足的社区(例如小型学院、高中)能够使用这些系统,这些社区可能无法获得最先进的实验室设备。该主要研究仪器(MRI)奖支持先锋自动化公司对PWB系统的收购。该工具将被放置在一个共享的洁净室设施——哈佛大学纳米系统中心,NNCI网络的成员——在那里它将被许多学术和工业用户使用。因此,该工具将实现许多科学突破,刺激技术进步和创业精神,并有助于培养多元化和精通光子的劳动力。现代芯片级光子系统由许多光学器件组成,包括波导,谐振器,调制器,开关,激光器和探测器,在各种光子材料中实现,并使应用范围从光通信和计算到另一端的传感和精密测量。集成光子学最突出的挑战是如何有效地在片内和片外获得光。由于亚微米级片上光波导与商用光纤(其光模直径超过10微米)之间存在较大的光模不匹配,当光从波导传输到光纤时,大部分光会丢失。这对于需要低温操作(例如在低温恒温器或稀释冰箱内),流体操作(例如在传感器中),可扩展性(例如同时连接10s或100s设备)或抗振动稳健性的应用尤其适用。最近,光子线键合,一种在电路中普遍存在的光学等效的电线键合,已经成为一种有前途的技术,可以在不同平台上的光子器件之间,或与光纤或激光建立有效和永久的连接。在这种方法中,三维聚合物波导被原位制造,以弥合位于不同芯片上的光子电路之间的差距,或者芯片与光纤或激光之间的差距。该技术不仅可以在光芯片和光纤之间实现可扩展、高效和低损耗的接口,还可以实现组合不同材料的紧凑混合器件。PWB工具将促进大量正在进行的研究项目的成功完成,这些项目的重点是开发新型芯片级激光器(包括脉冲激光器)、频率梳和单光子源,以及它们在微波光子学、光通信和计算、时间和距离的精确测量、环境监测、量子通信和计算中的应用。该工具还将通过执行长期稳定测量的能力提供新的机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marko Loncar其他文献
部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
北 翔太;Mike Burek;Daquan Yang;Marko Loncar - 通讯作者:
Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
- DOI:
10.1109/nano.2002.1032255 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Jelena Vučković;T. Yoshie;Marko Loncar;H. Mabuchi;Axel Scherer - 通讯作者:
Axel Scherer
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
- DOI:
10.1063/1.4867254 - 发表时间:
2014-08 - 期刊:
- 影响因子:4
- 作者:
Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan - 通讯作者:
Qimin Quan
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
- DOI:
10.1109/qels.2002.1031116 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe - 通讯作者:
D. Deppe
Marko Loncar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marko Loncar', 18)}}的其他基金
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
- 批准号:
2137723 - 财政年份:2021
- 资助金额:
$ 99.94万 - 项目类别:
Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
- 批准号:
1825257 - 财政年份:2019
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
- 批准号:
1946564 - 财政年份:2019
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
- 批准号:
1810233 - 财政年份:2018
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
- 批准号:
1827720 - 财政年份:2018
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
- 批准号:
1839197 - 财政年份:2018
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
- 批准号:
1740296 - 财政年份:2017
- 资助金额:
$ 99.94万 - 项目类别:
Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
- 批准号:
1609549 - 财政年份:2016
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
- 批准号:
1507508 - 财政年份:2015
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
- 批准号:
1428694 - 财政年份:2014
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
相似国自然基金
肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于生物学引导MRI-Transformer模型评估三阴性乳腺癌抗PD-1/PD-L1免疫治疗反应的研究
- 批准号:QN25H180017
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MRI深度学习Grad-CAM技术的临床显著性前列腺癌预测模型研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MRI时空异质性的影像组学联合临床文本数据挖掘预测乳腺癌HER2表达状态的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
核酸适体偶联的靶向对比剂用于早期膀胱癌的MRI成像诊断
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MRI深度组学联合液体活检技术构建乳腺癌新辅助化疗后pCR状态精准量化预测体系
- 批准号:MS25H180029
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MRI影像组学特征的子宫内膜癌分子分型术前预测模型构建
- 批准号:2025JJ80869
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
αvβ3整合素靶向有机探针用于NIR-II FL/MRI双模态成像引导的三阴性乳腺癌光热治疗研究
- 批准号:2025JJ81013
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
γ-谷氨酰转肽酶响应的近红外(NIR)余辉/MRI探针用于肝癌的诊疗一体化
- 批准号:2025JJ81188
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于时间依赖扩散MRI成像评估三阴性乳腺癌肿瘤免疫微环境特征及新辅助化学免疫治疗疗效的研究
- 批准号:2025JJ70285
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
- 批准号:
2319708 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Continuing Grant
Equipment: MRI Track 1: Acquisition of Flow Cytometer
设备:MRI 轨道 1:流式细胞仪的购置
- 批准号:
2320130 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
- 批准号:
2320356 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320407 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320405 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1: Acquisition of a Zeiss 560 VP FE-SEM for chemical and surface characterization and training.
设备:MRI:轨道 1:购买 Zeiss 560 VP FE-SEM,用于化学和表面表征和培训。
- 批准号:
2320480 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
MRI: Track 3 Acquisition of Helium Recovery Equipment at West Virginia University
MRI:第 3 轨道采购西弗吉尼亚大学氦回收设备
- 批准号:
2320495 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a Digital Real-Time Simulator to Enhance Research and Student Research Training in Next-Generation Engineering and Computer Science
设备: MRI:轨道 1 采购数字实时模拟器,以加强下一代工程和计算机科学的研究和学生研究培训
- 批准号:
2320619 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Equipment: MRI: Track #1 Acquisition of a Differential Scanning Calorimeter to Support Modern Materials Research and Teaching at Western Washington University
设备: MRI:轨道
- 批准号:
2320809 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
- 批准号:
2318210 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant