NANOSTRUCTURED PHOTONIC METAMATERIALS

纳米结构光子超材料

基本信息

  • 批准号:
    EP/G060363/1
  • 负责人:
  • 金额:
    $ 642.61万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Over the last twenty years photonics, the science of light, has played a key role in creating the world as we know it. Today it is impossible to imagine modern society without internet and mobile telephony made possible by the implementation of optical fibre networks, CD's and DVD's underpinned by the development of lasers, modern image display technologies, and laser-assisted manufacturing.We believe that the next photonic revolution will continue to grow, explosively fuelled by a new dependence on a radically different type of photonic materials called metamaterials. Metamaterials are artificial electromagnetic media with unusual and useful functionalities achieved by structuring on a sub-wavelength scale. Nanotechnology-enabled materials are now universally seen as the direction where the global economy will grow strongly in the 21st century. The proposed Programme is at the core of this global movement and focuses on an area of particular interest to the UK - nanophotonics and metamaterials. Our vision for this Programme is to develop a new generation of revolutionary switchable and active nanostructured photonic media thus providing groundbreaking solutions for telecoms, energy, light generation, imaging, lithography, data storage, sensing, and security and defence applications. The Programme will mobilize and focus all of the resources and interdisciplinary expertise available at the University of Southampton and with our collaboration partners in the UK and around the world, to create a world-leading centre of research on Nanostructured Photonic Metamaterials. The elements of adventure and key research challenges in this project can be summarized as follows: we aim to develop photonic media allowing for ultra-high-density integration, the lowest possible energy levels and the highest speeds of optical switching. This will be achieved by advancing the physics of the control, guiding and amplification of light in nanostructures and by developing new nanofabrication techniques and methods of hybridization and integration into the waveguide and fiber environment of different novel metamaterial structures.The main methodological paradigm for the Programme is to achieve new functionalities by developing hybrid photonic metamaterials. The Programme will consist of strongly interlinked projects on fabricating hybrid metamaterials, metamaterials as a platform for photonic devices and fundamental physical experiments, controllable, switchable and active hybrid metamaterials, and developing new ideas emerging from theoretical analysis. Essential to the project will be the new world-leading 105M cleanroom and laboratory Mountbatten complex at the University of Southampton. This proposal is submitted on behalf of an internationally leading team with a formidable research track record that within the last 10 years has led and participated in research projects with funding exceeding 34 millions, published 463 journal research papers and given more than 200 invited talks at major international meetings. The research will be developed in collaboration with key international research groups and industrial laboratories and in this way form a Global Laboratory for the project.This high-risk/high-reward Programme will be run by a strong Director-led management team which will benefit from advice from an independent Project Mentor and Advisory Board. Strategic decisions will be made using the search-and-focus approach involving regular critical reviews of the research programme under an active resources and risk management scheme allowing for the redistribution of resources and usage of reserves where they are most needed and to quickly foster new research directions.
在过去的二十年里,作为光科学的光子学在创造我们所知的世界方面发挥了关键作用。今天,我们不可能想象没有互联网和移动电话的现代社会是可能的,因为光纤网络的实施,CD和DVD的发展以激光、现代图像显示技术和激光辅助制造为基础。我们相信,下一次光子革命将继续增长,爆炸式的燃料是对一种完全不同类型的光子材料的新依赖,称为超材料。超材料是一种人工电磁介质,通过在亚波长尺度上的结构实现了不同寻常和有用的功能。纳米材料现在被普遍认为是21世纪全球经济强劲增长的方向。拟议的方案是这一全球运动的核心,侧重于联合王国特别感兴趣的一个领域--纳米光子学和超材料。我们对该计划的愿景是开发新一代革命性的可切换和有源纳米结构光子介质,从而为电信、能源、发光、成像、光刻、数据存储、传感以及安全和国防应用提供开创性的解决方案。该计划将调动和集中南安普顿大学现有的所有资源和跨学科专业知识,并与我们在英国和世界各地的合作伙伴合作,创建一个世界领先的纳米结构光子超材料研究中心。该项目的冒险元素和关键研究挑战可以概括如下:我们的目标是开发能够实现超高密度集成、尽可能低的能级和最高速度的光交换的光子介质。这将通过推进纳米结构中光的控制、引导和放大的物理学,以及开发新的纳米制造技术和方法,以杂交和集成到不同新型超材料结构的光波导和光纤环境中来实现。该计划的主要方法范式是通过开发混合光子超材料来实现新的功能。该计划将包括关于制造混合超材料、作为光子器件和基础物理实验平台的超材料、可控、可切换和有源混合超材料以及从理论分析中发展新想法的紧密联系的项目。该项目的关键是位于南安普顿大学的新的世界领先的1.05M无尘室和实验室蒙巴顿综合体。这项提案是代表一个国际领先的团队提交的,该团队拥有令人敬畏的研究记录,在过去10年中领导和参与了超过3400万美元的研究项目,发表了463篇期刊研究论文,并在主要国际会议上进行了200多次特邀演讲。这项研究将与主要的国际研究小组和工业实验室合作进行,并以这种方式形成项目的全球实验室。这一高风险/高回报计划将由一个强大的董事领导的管理团队运营,并将受益于独立项目导师和咨询委员会的建议。将采用搜索和重点办法作出战略决定,包括在积极的资源和风险管理计划下对研究方案进行定期严格审查,以便在最需要的地方重新分配资源和使用储备,并迅速促进新的研究方向。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soliton enhancement of spontaneous symmetry breaking
  • DOI:
    10.1364/optica.2.000783
  • 发表时间:
    2015-09-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Alberucci, Alessandro;Piccardi, Armando;Assanto, Gaetano
  • 通讯作者:
    Assanto, Gaetano
Transparent conducting oxides for active hybrid metamaterial devices
  • DOI:
    10.1088/2040-8978/14/11/114007
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Abb, Martina;Sepulveda, Borja;Muskens, Otto L.
  • 通讯作者:
    Muskens, Otto L.
The promise of chalcogenides
  • DOI:
    10.1038/nphoton.2011.155
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    35
  • 作者:
    N. Anscombe;D. Hewak
  • 通讯作者:
    N. Anscombe;D. Hewak
Atomic Response in the Near-field of Nanostructured Plasmonic Metamaterial
纳米结构等离子体超材料近场中的原子响应
  • DOI:
    10.48550/arxiv.1603.08287
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aljunid S
  • 通讯作者:
    Aljunid S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolay Zheludev其他文献

Superconductor photonics
超导体光子学
  • DOI:
    10.1038/nphoton.2014.206
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Ranjan Singh;Nikolay Zheludev
  • 通讯作者:
    Nikolay Zheludev

Nikolay Zheludev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolay Zheludev', 18)}}的其他基金

The Physics and Technology of Photonic Metadevices and Metasystems
光子元器件和元系统的物理和技术
  • 批准号:
    EP/M009122/1
  • 财政年份:
    2015
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant
NANOSCOPE: looking inside a living cell with nanoscale resolution
NANOSCOPE:以纳米级分辨率观察活细胞内部
  • 批准号:
    EP/F040644/1
  • 财政年份:
    2008
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant
NANOPHOTONICS: from fundamentals to real life applications (EPSRC Sponsored UK-Taiwan Collaboration Program for Success through People)
纳米光子学:从基础知识到现实生活中的应用(EPSRC 赞助的英台合作项目,以人为本)
  • 批准号:
    EP/F012810/1
  • 财政年份:
    2007
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Continuing Grant
CAREER: Melting-free Photonic Memory with Layered Chalcogenide Materials
职业:采用层状硫族化物材料的免熔化光子存储器
  • 批准号:
    2338546
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Continuing Grant
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Continuing Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
  • 批准号:
    24K17324
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CIRCULIGHT - Circulating Light on any Photonic Platform
CIRCULIGHT - 在任何光子平台上循环光
  • 批准号:
    10108367
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    EU-Funded
STREAM 2: A placed-based IAA in Photonic Technologies in Scotland's Central Belt
STREAM 2:苏格兰中央地带光子技术领域的基于位置的 IAA
  • 批准号:
    EP/Y024109/1
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Standard Grant
Photonic Integrated Modulators for Aerospace and Data/Telecom
用于航空航天和数据/电信的光子集成调制器
  • 批准号:
    EP/X011917/1
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant
Effects of sub-wavelength photonic nanostructures on thermally-activated delayed fluorescence
亚波长光子纳米结构对热激活延迟荧光的影响
  • 批准号:
    EP/Y021495/1
  • 财政年份:
    2024
  • 资助金额:
    $ 642.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了