NANOSCOPE: looking inside a living cell with nanoscale resolution
NANOSCOPE:以纳米级分辨率观察活细胞内部
基本信息
- 批准号:EP/F040644/1
- 负责人:
- 金额:$ 287.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increase in resolution of observational instruments is one of the main drivers of science and technology. Optical, electron and scanning microscopy have facilitated an uncountable number of key discoveries in biology, medicine, geology, chemistry, materials research and physics, while these instruments are now routinely used in hospitals, research and industrial laboratories. Although the wide application of lasers has led to the development of a number of high-resolution nonlinear optical techniques, these techniques only work with narrow classes of specimens and require the application of high and often destructive light intensity levels. Electron microscopy can provide high resolution, but living cells cannot survive the required vacuum, exposure to intense electron beams or sometimes necessary sample metallization. High resolution tunnelling and optical scanning microscopes (SNOM) are not capable of seeing internal sections of a living object - or indeed any object - without destroying it: their operation depends on the presence of probes a few nanometres from the feature being imaged. Therefore, it has not been possible so far to look inside a living cell or small biological object non-destructively with sub-wavelength resolution using low intensity light and without dependence on specific molecular absorption resonances.In the last few years we have witnessed the remarkable development of a new concept of optical super-resolution, proposed by Profs. Sir John Pendry and Victor Veselago. It is based on a negative-index material that refracts light in the opposite direction to normal media. Although the technology has been proved in principle, the development of a suitable optical negative index material for the negative index super-lens will require many years of work to overcome limitations of the nano-fabrication process and losses. Here we propose to develop a technology ALTERNATIVE to the Pendry-Veselago super-lens that will make possible sub-wavelength imaging. Our concept centres around a remarkable theoretical discovery published in 2006: Profs. Sir Michael Berry and Sandu Popescu (Bristol University and HP Laboratories) predicted that a properly designed grating structure could create sub-wavelength localisations of light that propagate several wavelengths away from the structure, into the far-field. They relate this effect to the fact that band-limited functions are able to oscillate arbitrarily faster than the highest Fourier components they contain, a phenomenon known as super-oscillation. This gives an opportunity of colossal importance: in principle it is possible to create an optical instrument with resolution far exceeding the wavelength limit and operating with specimens located a few tens of microns away from the lens without developing negative index materials. Recently our group demonstrated a far-field subwavelength concentrator of light, a nanolens which is an appropriately designed array of nano-holes that creates optical super-oscillations and focuses coherent radiation into a sub-Rayleigh resolution spot. This provides the foundation for our proposal that will give the UK science an exceptional opportunity to develop a new technology which was born in this country. The main goal of the proposed research is to develop a new generation of non-invasive super-resolution optical technologies (nanoscope) based on the development of the super-oscillation concept and to demonstrate the use of nanoscope instruments with the hope of imaging the inside of a living cell and perhaps a single large bio-molecule. The technique will also provide new opportunities for trapping and manipulating extremely small objects, for instance inside a living cell or detecting the motion of nanoparticles on optical landscapes. Beyond the biological applications this project will have a colossal impact on all types of imaging application and on lithography high-density component integration.
观测仪器分辨率的提高是科学和技术的主要驱动力之一。光学、电子和扫描显微镜促进了生物学、医学、地质学、化学、材料研究和物理学中无数的关键发现,而这些仪器现在通常用于医院、研究和工业实验室。虽然激光的广泛应用导致了一些高分辨率非线性光学技术的发展,但这些技术只适用于窄类样品,并且需要应用高且通常具有破坏性的光强度水平。电子显微镜可以提供高分辨率,但活细胞无法在所需的真空中存活,暴露于强电子束或有时必要的样品金属化。高分辨率隧道和光学扫描显微镜(SNOM)无法在不破坏活体的情况下看到活体或任何物体的内部切片:它们的操作取决于距离成像特征几纳米的探针的存在。因此,到目前为止,不依赖于特定的分子吸收共振,使用低强度光以亚波长分辨率无损地观察活细胞或小的生物物体内部是不可能的。在过去的几年里,我们目睹了一个新的概念光学超分辨率的显着发展,由Profs.约翰·潘德里爵士和维克托·维斯拉格。它基于负折射率材料,将光折射到与正常介质相反的方向。虽然该技术已在原理上得到证明,但为负折射率超透镜开发合适的光学负折射率材料将需要多年的工作来克服纳米制造工艺的限制和损失。在这里,我们建议开发一种替代Pendry-Veselago超级透镜的技术,使亚波长成像成为可能。我们的概念围绕着2006年发表的一个非凡的理论发现:教授。迈克尔·贝里爵士和桑杜·波佩斯库(布里斯托大学和惠普实验室)预测,一个适当设计的光栅结构可以产生亚波长的光定位,传播几个波长远离结构,进入远场。他们将这种效应与带限函数能够以比它们包含的最高傅立叶分量更快的任意速度振荡的事实联系起来,这种现象称为超振荡。这提供了一个非常重要的机会:原则上,可以创建一种光学仪器,其分辨率远远超过波长极限,并且可以使用距离透镜几十微米的样品,而无需开发负折射率材料。最近,我们的团队展示了一种远场亚波长光集中器,一种纳米透镜,它是一种适当设计的纳米孔阵列,可以产生光学超振荡,并将相干辐射聚焦到亚瑞利分辨率的光斑中。这为我们的提案提供了基础,该提案将为英国科学提供一个特殊的机会,以开发诞生于这个国家的新技术。拟议研究的主要目标是开发新一代的非侵入性超分辨率光学技术(纳米镜)的基础上发展的超振荡概念,并展示使用纳米仪器的希望成像的内部活细胞,也许是一个单一的大生物分子。该技术还将为捕获和操纵极小的物体提供新的机会,例如在活细胞内或检测光学景观上纳米颗粒的运动。除了生物应用,该项目将对所有类型的成像应用和光刻高密度组件集成产生巨大影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coherent control of plasmonic nanoantennas using optical eigenmodes.
- DOI:10.1038/srep01808
- 发表时间:2013
- 期刊:
- 影响因子:4.6
- 作者:Kosmeier, Sebastian;De Luca, Anna Chiara;Zolotovskaya, Svetlana;Di Falco, Andrea;Dholakia, Kishan;Mazilu, Michael
- 通讯作者:Mazilu, Michael
Metamaterial as a controllable template for nanoscale field localization
- DOI:10.1063/1.3291675
- 发表时间:2010-01-25
- 期刊:
- 影响因子:4
- 作者:Kao, T. S.;Huang, F. M.;Zheludev, N. I.
- 通讯作者:Zheludev, N. I.
Far field subwavelength focusing using optical eigenmodes
- DOI:10.1063/1.3587636
- 发表时间:2011-05-02
- 期刊:
- 影响因子:4
- 作者:Baumgartl, Joerg;Kosmeier, Sebastian;Dholakia, Kishan
- 通讯作者:Dholakia, Kishan
Enhanced two-point resolution using optical eigenmode optimized pupil functions
- DOI:10.1088/2040-8978/13/10/105707
- 发表时间:2011-10-01
- 期刊:
- 影响因子:2.1
- 作者:Kosmeier, S.;Mazilu, M.;Dholakia, K.
- 通讯作者:Dholakia, K.
A novel 3D nanolens for sub-wavelength focusing by self-aligned nanolithography
- DOI:10.1016/j.mee.2009.11.064
- 发表时间:2010-05
- 期刊:
- 影响因子:2.3
- 作者:B. Lu;Yifang Chen;Shao-Wei Wang;E. Huq;E. Rogers;T. Kao;X. Qu;Ran Liu;N. Zheludev
- 通讯作者:B. Lu;Yifang Chen;Shao-Wei Wang;E. Huq;E. Rogers;T. Kao;X. Qu;Ran Liu;N. Zheludev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolay Zheludev其他文献
Superconductor photonics
超导体光子学
- DOI:
10.1038/nphoton.2014.206 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:32.900
- 作者:
Ranjan Singh;Nikolay Zheludev - 通讯作者:
Nikolay Zheludev
Nikolay Zheludev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolay Zheludev', 18)}}的其他基金
The Physics and Technology of Photonic Metadevices and Metasystems
光子元器件和元系统的物理和技术
- 批准号:
EP/M009122/1 - 财政年份:2015
- 资助金额:
$ 287.19万 - 项目类别:
Research Grant
NANOSTRUCTURED PHOTONIC METAMATERIALS
纳米结构光子超材料
- 批准号:
EP/G060363/1 - 财政年份:2010
- 资助金额:
$ 287.19万 - 项目类别:
Research Grant
NANOPHOTONICS: from fundamentals to real life applications (EPSRC Sponsored UK-Taiwan Collaboration Program for Success through People)
纳米光子学:从基础知识到现实生活中的应用(EPSRC 赞助的英台合作项目,以人为本)
- 批准号:
EP/F012810/1 - 财政年份:2007
- 资助金额:
$ 287.19万 - 项目类别:
Research Grant
相似国自然基金
Forward-Looking与Backward-Looking相结合的投资组合管理
- 批准号:71471180
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
How Old Are The Stars? Looking Inside Stars with Asteroseismology
星星的年龄有多大?
- 批准号:
FL220100117 - 财政年份:2023
- 资助金额:
$ 287.19万 - 项目类别:
Australian Laureate Fellowships
Unveiling missing physics: looking inside stars with NASA's TESS Mission
揭示缺失的物理现象:通过 NASA 的 TESS 任务观察恒星内部
- 批准号:
DP210103119 - 财政年份:2021
- 资助金额:
$ 287.19万 - 项目类别:
Discovery Projects
Looking inside matter and antimatter with ultra-violet and extreme ultra-violet lasers
用紫外和极紫外激光器观察物质和反物质内部
- 批准号:
RGPIN-2014-03756 - 财政年份:2018
- 资助金额:
$ 287.19万 - 项目类别:
Discovery Grants Program - Individual
Looking inside matter and antimatter with ultra-violet and extreme ultra-violet lasers
用紫外和极紫外激光器观察物质和反物质内部
- 批准号:
RGPIN-2014-03756 - 财政年份:2017
- 资助金额:
$ 287.19万 - 项目类别:
Discovery Grants Program - Individual
In-situ luminescence analysis of coordination sensors: looking inside chemical reactions
配位传感器的原位发光分析:观察化学反应的内部
- 批准号:
287010108 - 财政年份:2016
- 资助金额:
$ 287.19万 - 项目类别:
Research Grants
Looking inside matter and antimatter with ultra-violet and extreme ultra-violet lasers
用紫外和极紫外激光器观察物质和反物质内部
- 批准号:
RGPIN-2014-03756 - 财政年份:2016
- 资助金额:
$ 287.19万 - 项目类别:
Discovery Grants Program - Individual
Looking inside matter and antimatter with ultra-violet and extreme ultra-violet lasers
用紫外和极紫外激光器观察物质和反物质内部
- 批准号:
RGPIN-2014-03756 - 财政年份:2015
- 资助金额:
$ 287.19万 - 项目类别:
Discovery Grants Program - Individual
Looking inside the Continents from Space: Insights into Earthquake Hazard and Crustal Deformation
从太空看大陆内部:深入了解地震危害和地壳变形
- 批准号:
NE/K010794/1 - 财政年份:2014
- 资助金额:
$ 287.19万 - 项目类别:
Research Grant
Looking inside matter and antimatter with ultra-violet and extreme ultra-violet lasers
用紫外和极紫外激光器观察物质和反物质内部
- 批准号:
RGPIN-2014-03756 - 财政年份:2014
- 资助金额:
$ 287.19万 - 项目类别:
Discovery Grants Program - Individual
Looking inside the Continents from Space: Insights into Earthquake Hazard and Crustal Deformation
从太空看大陆内部:深入了解地震危害和地壳变形
- 批准号:
NE/K010867/1 - 财政年份:2014
- 资助金额:
$ 287.19万 - 项目类别:
Research Grant