Applications of Frobenius maps
弗罗贝尼乌斯图的应用
基本信息
- 批准号:EP/G060967/1
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many theorems in Commutative Algebra can be proved by showing that:(1) if the theorem fails, one can find a counter-example in a ring of prime characteristic p (i.e., a ring which contains the ring of integers modulo a prime number p), and(2) no such counter-example exists in characteristic p.Step (2) above is often much easier to prove than in characteristic zero because of the existence of the Frobenius function f(r) which raises r to the pth power. This functon is an endomorphism of the rings, i.e., it has the property that f(r+s)=f(r)+f(s), and surprisingly, gives a good handle on many problems in characteristic p.A formal method to exploit the existence of these Frobenius function is the theory of Tight Closure which was first developed about 20 years ago to tackle old problems in the field. Since its inception it has been very successful in giving short and elegant solutions to hard old questions. Tight Closure also found surprising applications in other fields, especially in Algebraic Geometry.The essence of this theory is an operation which takes an ideal in a ring of commutative ring of characteristic p and produces another larger ideal with useful properties. This operation is very difficult to grasp, even in seemingly simple examples, and one of the aims of this project is to produce an algorithm to compute a crucial component involved in the tight closure operation, namely parameter-test-ideals and test-ideals. The approach taken by this project is to study this test-ideals via a duality which relates them to certain sub-objects of certain large and complicated objects, namely injective hulls of the residue field of the ring. This approach has been very successful in tackling a relatively simple instance of this problem and the project will attempt the generalize those results.The study of injective hulls of the residue field of the ring yielded new insights into a certain widely studied set numerical invariants of algebraic sets, namely their jumping coefficients. This resulted in a proof that these invariants for surfaces defined by one condition form a discrete set of rational numbers. This project will attempt to generalize this result for other surfaces and it will try to produce an algorithm for computing these numbers.
可以证明:(1)如果理论失败,可以证明许多定理的定理,可以在主要特征p的环中找到反例(即,包含整数ring ring on of the Integers a Modulo a prime d p),并且(2)在特征范围内(2)的特征(2)在特征上(2)的特征(2)在特征上(2)的特征(2) Frobenius函数F(R)将R提高到PTH功率。该功能子是环的内态性,即,它具有f(r+s)= f(r)+f(r)+f(s)的属性,令人惊讶的是,它很好地解决了许多特征性的问题。自成立以来,它在为艰难的旧问题提供简短而优雅的解决方案方面非常成功。紧密闭合还发现了其他领域的惊人应用,尤其是在代数几何形状中。该理论的本质是一种在特征P的通勤环中采用理想的操作,并在具有有用属性的情况下产生了另一个更大的理想。即使在看似简单的示例中,该操作也很难掌握,该项目的目的之一是生成算法来计算与紧密闭合操作有关的关键组件,即参数测试 - 理想和测试理想。该项目采用的方法是通过二元性研究这种测试理想,将它们与某些大型且复杂物体的某些亚物体相关联,即环形残基场的注射式壳体。这种方法在解决此问题的相对简单实例方面非常成功,该项目将尝试概括这些结果。对戒指残留场的注射式船体的研究产生了对某些经过广泛研究的代数组合的数值不变性的新见解,即它们的跳跃系数。这导致了一个证明,这些不变的表面由一个条件定义的表面形成了一个离散的有理数集。该项目将尝试将此结果推广到其他表面,并尝试生成用于计算这些数字的算法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frobenius maps on injective hulls and their applications to tight closure
Frobenius 映射射壳及其在紧密闭合中的应用
- DOI:10.1112/jlms/jdq003
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Katzman M
- 通讯作者:Katzman M
Some properties and applications of $F$-finite $F$-modules
$F$-有限$F$-模块的一些性质和应用
- DOI:10.1216/jca-2011-3-2-225
- 发表时间:2011
- 期刊:
- 影响因子:0.6
- 作者:Katzman M
- 通讯作者:Katzman M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mordechai Katzman其他文献
Parameter-test-ideals of Cohen–Macaulay rings
科恩-麦考利环的参数检验理想
- DOI:
10.1112/s0010437x07003417 - 发表时间:
2007 - 期刊:
- 影响因子:1.8
- 作者:
Mordechai Katzman - 通讯作者:
Mordechai Katzman
THE HILBERT SERIES OF ALGEBRAS OF THE VERONESE TYPE
维罗内塞型代数的希尔伯特级数
- DOI:
10.1081/agb-200053828 - 发表时间:
2004 - 期刊:
- 影响因子:0.7
- 作者:
Mordechai Katzman - 通讯作者:
Mordechai Katzman
Strong <em>F</em>-regularity and generating morphisms of local cohomology modules
- DOI:
10.1016/j.jalgebra.2018.12.030 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Mordechai Katzman;Cleto B. Miranda-Neto - 通讯作者:
Cleto B. Miranda-Neto
The support of top graded local cohomology modules
顶级局部上同调模块的支持
- DOI:
10.1201/9781420028324.ch12 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Mordechai Katzman - 通讯作者:
Mordechai Katzman
On Ideals of Minors of Matrices with Indeterminate Entries
关于不定项矩阵的次式理想
- DOI:
10.1080/00927870701665206 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Mordechai Katzman - 通讯作者:
Mordechai Katzman
Mordechai Katzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mordechai Katzman', 18)}}的其他基金
Common threads in the theories of Local Cohomology, D-modules and Tight Closure and their interactions
局部上同调、D 模和紧闭理论的共同点及其相互作用
- 批准号:
EP/J005436/1 - 财政年份:2012
- 资助金额:
$ 1.73万 - 项目类别:
Research Grant
Prime characteristic methods in commutative algebra
交换代数中的质数特征方法
- 批准号:
EP/I031405/1 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Research Grant
Tight closure, Frobenius maps and Frobenius splittings
紧闭、Frobenius 映射和 Frobenius 分裂
- 批准号:
EP/H040684/1 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Research Grant
相似国自然基金
Frobenius-Erdős-Graham问题及相关和集问题的研究
- 批准号:12371003
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
Frobenius群上弧传递Cayley图的自同构群、正规性及其覆盖
- 批准号:12301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模Frobenius群及其推广
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
k-着色推广Frobenius分拆的同余和组合性质
- 批准号:12201093
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
k-着色推广Frobenius分拆的同余和组合性质
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
- 批准号:
2302511 - 财政年份:2023
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
周期と Coxeter 変換から見た Frobenius 構造
从周期和考克塞特变换看弗罗贝尼乌斯结构
- 批准号:
22K03295 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
三角幾何学の構築とその可換環論への応用
三角形几何的构造及其在交换环理论中的应用
- 批准号:
22K13894 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Solutions exactes du système WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) et structures de variétés de Dubrovin-Frobenius sur un espace de courbes elliptiques
WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) 系统的精确解决方案和椭圆形椭圆空间上的 Dubrovin-Frobenius 变量结构
- 批准号:
575451-2022 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's