Controlled, staged electron acceleration in plasma waveguides

等离子体波导中的受控、分级电子加速

基本信息

  • 批准号:
    EP/G067791/1
  • 负责人:
  • 金额:
    $ 16.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Particle accelerators are used in many areas of the physical and biological sciences. For example, fundamental studies ofthe building blocks of matter are carried out with huge accelerators at institutions such as CERN. On a smaller scale,synchrotrons use accelerated electron beams to create light which is widely tunable from the infra-red to x-rays.The conventional accelerators used in these machines employ radio-frequency electric fields to accelerate chargedparticles. However, the maximum electric field that can be used is limited by electrical breakdown in the beam pipes, sothat accelerating particles to high energies requires a very long accelerator (the largest machine at CERN is 27 km incircumference!).Laser-driven plasma accelerators offer a way to make particle accelerators much more compact. In these devices anintense laser pulse propagates through an ionized gas (a plasma). As it does so, the laser pulse pushes the electronsaway from it and sets up a plasma wave which follows behind the laser pulse; this behaviour is directly analogous to thewater wake which trails a boat crossing a lake. In the case of a plasma wave, at the peaks of the wave there are moreelectrons than average, and at the troughs there are fewer. As a result of this charge separation, a very large electric fieldforms between the peaks and troughs of the plasma wave. This field can be about 1000 times larger than the maximumelectric field used in conventional accelerators, which means that a plasma accelerator can be 1000 times shorter than aconventional one and still produce particles of the same energy.This idea for making compact accelerators was first proposed over 25 years ago, but until recently the energies theycould reach were relatively low. The primary reason for this is that the driving laser pulse naturally defocuses as itpropagates through the plasma, reducing its intensity to the extent that acceleration ceases after only a few millimetres.Over the last few years our group has developed a new technique for channelling the intense laser pulses over longdistances. This technique involves forming a so-called plasma waveguide by firing an electrical discharge through anarrow, gas-filled capillary. The plasma formed in this way has a lower density on axis, which acts to continually refocusthe laser radiation and so prevent it from defocusing. The plasma waveguide is therefore similar to an optical fibre.Very recently we used this channelling technique to extend the length of laser-driven plasma accelerators by more than afactor of 10, and so increase the energy of the accelerated electrons to a billion electron volts - that is, the energy anelectron would gain if it were accelerated by two plates with a billion volts between them. This electron energy is about thesame as used in conventional synchrotrons - but the plasma accelerator is only 33 mm long, compared the tens of metresrequired for a conventional accelerator.The present programme of research aims to build on these advances and develop techniques for increasing the energy ofthe accelerated electrons and providing more control of the acceleration process.
粒子加速器被用于物理和生物科学的许多领域。例如,在欧洲核子研究中心(CERN)等机构,物质基本组成部分的基础研究是通过巨大的加速器进行的。在较小的范围内,同步加速器使用加速电子束来产生从红外线到x射线的可调谐光,这些机器中使用的传统加速器使用射频电场来加速带电粒子。然而,可以使用的最大电场受到束管中电击穿的限制,因此将粒子加速到高能量需要很长的加速器(CERN最大的机器周长为27公里!)。激光驱动等离子体加速器提供了一种使粒子加速器更加紧凑的方法。在这些设备中,强激光脉冲通过电离气体(等离子体)传播。当它这样做时,激光脉冲将电子从它身边推开,并建立一个跟随在激光脉冲后面的等离子体波;这种行为直接类似于水的尾流,它尾随着一艘穿过湖泊的船。在等离子体波的情况下,在波的峰值有更多的电子比平均水平,并在波谷有较少。由于这种电荷分离,在等离子体波的波峰和波谷之间形成非常大的电场。这一电场可以比传统加速器中使用的最大电场大1000倍,这意味着等离子体加速器可以比传统加速器短1000倍,并且仍然可以产生相同能量的粒子。制造紧凑型加速器的想法是在25年前首次提出的,但直到最近,它们所能达到的能量相对较低。其主要原因是驱动激光脉冲在等离子体中传播时会自然散焦,其强度会降低到仅在几毫米后就停止加速的程度。在过去的几年里,我们的小组已经开发出一种新技术,可以将强激光脉冲引导到长距离。这种技术包括通过一个箭头状的、充满气体的毛细管发射一个放电来形成一个所谓的等离子体波导。以这种方式形成的等离子体在轴上具有较低的密度,其作用是不断地重新聚焦激光辐射,从而防止其散焦。因此,等离子体波导类似于光纤。最近,我们利用这种通道技术将激光驱动的等离子体加速器的长度延长了10倍以上,从而将加速电子的能量提高到10亿电子伏特--也就是说,如果一个电子被两个之间有10亿伏特电压的平板加速,它将获得的能量。这种电子的能量与传统同步加速器中使用的能量大致相同--但等离子体加速器只有33毫米长,而传统加速器需要几十米长。目前的研究计划旨在建立在这些进步的基础上,开发提高加速电子能量的技术,并对加速过程提供更多的控制。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser wakefield acceleration in tapered plasma channels : theory, simulation and experiment
锥形等离子体通道中的激光尾场加速:理论、模拟和实验
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rittershofer Wolf
  • 通讯作者:
    Rittershofer Wolf
Investigation of GeV-scale electron acceleration in a gas-filled capillary discharge waveguide
  • DOI:
    10.1088/1367-2630/15/4/045024
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    P. A. Walker;N. Bourgeois;W. Rittershofer;J. Cowley;N. Kajumba;A. Maier;J. Wenz;C. Werle;S. K
  • 通讯作者:
    P. A. Walker;N. Bourgeois;W. Rittershofer;J. Cowley;N. Kajumba;A. Maier;J. Wenz;C. Werle;S. K
Electron trapping and reinjection in prepulse-shaped gas targets for laser-plasma accelerators
激光等离子体加速器预脉冲形状气体靶中的电子捕获和再注入
Electron acceleration driven in plasma channels at the Astra-Gemini laser facility
Astra-Gemini 激光设施的等离子体通道中驱动的电子加速
  • DOI:
    10.1063/1.4773693
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walker P
  • 通讯作者:
    Walker P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Martin Hooker其他文献

Simon Martin Hooker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Martin Hooker', 18)}}的其他基金

Pump laser for TW laser system
用于 TW 激光系统的泵浦激光器
  • 批准号:
    ST/X004716/1
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
All-Optical Plasma Channels and Electron Injection with Spatio-temporal Control
时空控制的全光等离子体通道和电子注入
  • 批准号:
    EP/V006797/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Table-top femtosecond X-ray dynamical imaging
台式飞秒X射线动态成像
  • 批准号:
    EP/L015137/1
  • 财政年份:
    2014
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Development of stable laser-accelerated electron beams for radiation generation
开发用于辐射产生的稳定激光加速电子束
  • 批准号:
    EP/H011145/1
  • 财政年份:
    2009
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Adaptive control, generation, and characterization of bright soft x-rays by quasi-phase-matching
通过准相位匹配自适应控制、生成和表征明亮的软 X 射线
  • 批准号:
    EP/G067694/1
  • 财政年份:
    2009
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Plasma Accelerators Driven In Waveguides: Training the Next Generation of Facility Users
波导驱动的等离子体加速器:培训下一代设施用户
  • 批准号:
    EP/F020120/1
  • 财政年份:
    2007
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant

相似海外基金

Healthy Jozi: A Staged Approach to Better Workplace Food Choices and Chronic Disease Screening and Linkage to Care
健康 Jozi:更好的工作场所食物选择和慢性病筛查以及与护理联系的分阶段方法
  • 批准号:
    MR/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Staged Acceleration of Plasma Accelerators
等离子体加速器的分级加速
  • 批准号:
    2892024
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Studentship
Staged Low-Barrier and Mobile Care to Improve Retention and Viral Suppression in Hard-To-Reach Vulnerable People Living With HIV
分阶段进行低门槛和流动护理,以改善难以接触到的艾滋病毒感染者的保留和病毒抑制
  • 批准号:
    10462318
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
A new role of pancreatic growth-related factors (REG3) in two-staged rapid liver regeneration
胰腺生长相关因子(REG3)在两阶段快速肝再生中的新作用
  • 批准号:
    22K08817
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Staged Low-Barrier and Mobile Care to Improve Retention and Viral Suppression in Hard-To-Reach Vulnerable People Living With HIV
分阶段进行低门槛和流动护理,以改善难以接触到的艾滋病毒感染者的保留和病毒抑制
  • 批准号:
    10663920
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
A staged, comprehensive investigation for developing insular deep brain stimulation to treat refractory chronic pain
开发岛叶深部脑刺激治疗难治性慢性疼痛的分阶段综合研究
  • 批准号:
    10707008
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
A staged, comprehensive investigation for developing insular deep brain stimulation to treat refractory chronic pain
开发岛叶深部脑刺激治疗难治性慢性疼痛的分阶段综合研究
  • 批准号:
    10437978
  • 财政年份:
    2022
  • 资助金额:
    $ 16.21万
  • 项目类别:
Expanded Interiors Re-Staged - from Herculaneum and Pompeii to the North-East of England
扩大的室内装饰重新上演——从赫库兰尼姆和庞贝古城到英格兰东北部
  • 批准号:
    AH/V008374/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Development of temporary high-volume hand-wash facilities to suppress re-infection rates in a staged lockdown phase-out
开发临时大容量洗手设施,以抑制分阶段封锁阶段的再次感染率
  • 批准号:
    60751
  • 财政年份:
    2020
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Feasibility Studies
Flame stabilisation and structure in axially staged combustion
轴向分级燃烧中的火焰稳定性和结构
  • 批准号:
    DP200103535
  • 财政年份:
    2020
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了