Plasma Accelerators Driven In Waveguides: Training the Next Generation of Facility Users

波导驱动的等离子体加速器:培训下一代设施用户

基本信息

  • 批准号:
    EP/F020120/1
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Particle accelerators are used in many areas of the physical and biological sciences. For example, fundamental studies of the building blocks of matter are carried out with huge accelerators at institutions such as CERN. On a smaller scale, synchrotrons use accelerated electron beams to create light which is widely tunable from the infra-red to x-rays.The conventional accelerators used in these machines employ radio-frequency electric fields to accelerate charged particles. However, the maximum electric field that can be used is limited by electrical breakdown in the beam pipes, so that accelerating particles to high energies requires a very long accelerator (the largest machine at CERN is 27 km in circumference!).Laser-driven plasma accelerators offer a way to make particle accelerators much more compact. In these devices an intense laser pulse propagates through an ionized gas (a plasma). As it does so, the laser pulse pushes the electrons away from it and sets up a plasma wave which follows behind the laser pulse; this behaviour is directly analogous to the water wake which trails a boat crossing a lake. In the case of a plasma wave, at the peaks of the wave there are more electrons than average, and at the troughs there are fewer. As a result of this charge separation, a very large electric field forms between the peaks and troughs of the plasma wave. This field can be about 1000 times larger than the maximum electric field used in conventional accelerators, which means that a plasma accelerator can be 1000 times shorter than a conventional one and still produce particles of the same energy.This idea for making compact accelerators was first proposed over 25 years ago, but until recently the energies they could reach were relatively low. The primary reason for this is that the driving laser pulse naturally defocuses as it propagates through the plasma, reducing its intensity to the extent that acceleration ceases after only a few millimetres.Over the last few years our group has developed a new technique for channelling the intense laser pulses over long distances. This technique involves forming a so-called plasma waveguide by firing an electrical discharge through a narrow, gas-filled capillary. The plasma formed in this way has a lower density on axis, which acts to continually refocus the laser radiation and so prevent it from defocusing. The plasma waveguide is therefore similar to an optical fibre.Very recently we used this channelling technique to extend the length of laser-driven plasma accelerators by more than a factor of 10, and so increase the energy of the accelerated electrons to a billion electron volts - that is, the energy an electron would gain if it were accelerated by two plates with a billion volts between them. This electron energy is about the same as used in conventional synchrotrons - but the plasma accelerator is only 33 mm long, compared the tens of metres required for a conventional accelerator.The present programme of research aims to build on these advances and develop techniques for increasing the energy of the accelerated electrons and providing more control of the acceleration process.
粒子加速器被用于物理和生物科学的许多领域。例如,对物质组成部分的基础研究是在欧洲核子研究中心(CERN)等机构的巨大加速器上进行的。在较小的范围内,同步加速器使用加速电子束来产生从红外线到x射线的广泛可调谐的光,这些机器中使用的传统加速器使用射频电场来加速带电粒子。然而,可以使用的最大电场受到束管中电击穿的限制,因此将粒子加速到高能量需要非常长的加速器(CERN最大的机器周长为27公里!)。激光驱动等离子体加速器提供了一种使粒子加速器更加紧凑的方法。在这些设备中,强激光脉冲通过电离气体(等离子体)传播。当它这样做时,激光脉冲将电子从它身边推开,并在激光脉冲后面建立等离子体波;这种行为直接类似于水尾流,它尾随着一艘穿过湖泊的船。在等离子体波的情况下,在波的峰值处有比平均值更多的电子,并且在波谷处有更少的电子。由于这种电荷分离,在等离子体波的波峰和波谷之间形成非常大的电场。这个电场可以比传统加速器中使用的最大电场大1000倍,这意味着等离子体加速器可以比传统加速器短1000倍,并且仍然可以产生相同能量的粒子。这种制造紧凑型加速器的想法最初是在25年前提出的,但直到最近,它们可以达到的能量相对较低。其主要原因是驱动激光脉冲在等离子体中传播时会自然散焦,使其强度降低到仅在几毫米后就停止加速的程度。在过去的几年里,我们的小组开发了一种新技术,可以将强激光脉冲引导到长距离。这种技术涉及通过狭窄的充气毛细管发射放电来形成所谓的等离子体波导。以这种方式形成的等离子体在轴上具有较低的密度,其作用是不断地重新聚焦激光辐射,从而防止其散焦。因此,等离子体波导类似于光纤,最近我们利用这种通道技术将激光驱动的等离子体加速器的长度延长了10倍以上,从而将加速电子的能量提高到10亿电子伏特--也就是说,如果电子被两个之间有10亿伏特电压的平板加速,它将获得的能量。这种电子能量与传统同步加速器所使用的电子能量大致相同,但等离子体加速器只有33毫米长,而传统加速器所需的长度为数十米。目前的研究方案旨在利用这些进展,开发提高加速电子能量的技术,并对加速过程提供更多的控制。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Charge calibration of lanex screens and image plates for electrons at 500 MeV
Lanex 屏幕和图像板的 500 MeV 电子电荷校准
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Andreas Walker (Author)
  • 通讯作者:
    Paul Andreas Walker (Author)
Laser wakefield acceleration of electrons to GeV energies and temporal laser pulse compression characterization in a capillary discharge waveguide
毛细管放电波导中电子到 GeV 能量的激光尾场加速和时间激光脉冲压缩表征
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walker Paul Andreas
  • 通讯作者:
    Walker Paul Andreas
Electron acceleration driven in plasma channels at the Astra-Gemini laser facility
Astra-Gemini 激光设施的等离子体通道中驱动的电子加速
  • DOI:
    10.1063/1.4773693
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walker P
  • 通讯作者:
    Walker P
Investigation of GeV-scale electron acceleration in a gas-filled capillary discharge waveguide
  • DOI:
    10.1088/1367-2630/15/4/045024
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    P. A. Walker;N. Bourgeois;W. Rittershofer;J. Cowley;N. Kajumba;A. Maier;J. Wenz;C. Werle;S. K
  • 通讯作者:
    P. A. Walker;N. Bourgeois;W. Rittershofer;J. Cowley;N. Kajumba;A. Maier;J. Wenz;C. Werle;S. K
Generation of electron beams in low-density plasma channels
在低密度等离子体通道中产生电子束
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N Bourgeois
  • 通讯作者:
    N Bourgeois
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Martin Hooker其他文献

Simon Martin Hooker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Martin Hooker', 18)}}的其他基金

Pump laser for TW laser system
用于 TW 激光系统的泵浦激光器
  • 批准号:
    ST/X004716/1
  • 财政年份:
    2022
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
All-Optical Plasma Channels and Electron Injection with Spatio-temporal Control
时空控制的全光等离子体通道和电子注入
  • 批准号:
    EP/V006797/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Table-top femtosecond X-ray dynamical imaging
台式飞秒X射线动态成像
  • 批准号:
    EP/L015137/1
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Development of stable laser-accelerated electron beams for radiation generation
开发用于辐射产生的稳定激光加速电子束
  • 批准号:
    EP/H011145/1
  • 财政年份:
    2009
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Adaptive control, generation, and characterization of bright soft x-rays by quasi-phase-matching
通过准相位匹配自适应控制、生成和表征明亮的软 X 射线
  • 批准号:
    EP/G067694/1
  • 财政年份:
    2009
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Controlled, staged electron acceleration in plasma waveguides
等离子体波导中的受控、分级电子加速
  • 批准号:
    EP/G067791/1
  • 财政年份:
    2009
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant

相似海外基金

Optical Visualization of Beam-Driven Plasma Wakefield Accelerators
光束驱动等离子体韦克场加速器的光学可视化
  • 批准号:
    2308921
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Development of Hard Real-Time Recognition Technologies With Deadline-driven AI Accelerators
利用截止日期驱动的人工智能加速器开发硬实时识别技术
  • 批准号:
    23H03477
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards laser-driven proton accelerators for proton therapy
用于质子治疗的激光驱动质子加速器
  • 批准号:
    519300-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optical Visualization of Beam-driven Plasma Wakefield Accelerators
光束驱动等离子体韦克场加速器的光学可视化
  • 批准号:
    2010435
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Towards laser-driven proton accelerators for proton therapy
用于质子治疗的激光驱动质子加速器
  • 批准号:
    519300-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards laser-driven proton accelerators for proton therapy
用于质子治疗的激光驱动质子加速器
  • 批准号:
    519300-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optical Scale Laser-Driven Electron Accelerators for Attosecond Radiation Sources
用于阿秒辐射源的光学级激光驱动电子加速器
  • 批准号:
    1535711
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Tomographic Visualization of Electron-Beam-Driven Plasma Wakefield Accelerators
电子束驱动等离子体韦克场加速器的断层扫描可视化
  • 批准号:
    1416218
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
SHF: Small: Synthesis-Driven Methods for Reuse, Integration, and Programming of Specialized Accelerators in Systems-on-Chip
SHF:小型:用于片上系统中专用加速器的重用、集成和编程的综合驱动方法
  • 批准号:
    1219001
  • 财政年份:
    2012
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Helicon wave physics for the development of a helicon plasma cell for particle-driven wakefield accelerators
用于开发用于粒子驱动尾场加速器的螺旋等离子体单元的螺旋波物理学
  • 批准号:
    517709182
  • 财政年份:
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了