Cognitive Mapping, System Dynamics and the Bullwhip Effect

认知图、系统动力学和牛鞭效应

基本信息

  • 批准号:
    EP/G070369/1
  • 负责人:
  • 金额:
    $ 2.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

This project deals with the problem of the Bullwhip effect, i.e. that of magnifying inventories as we move backwards in a supply chain. This effect has been highlighted in the academic literature for many decades and, admittedly, it has attracted a tremendous amount of scientific research. However, all the relevant projects have focused on only a limited number of the contributory factors, with no integrative model having yet been established. Despite the importance of such work for developing our understanding of the behaviour of supply chains, the problem still prevails in industrial applications. The fragmented approach to the relevant problem solving may well be explained in terms of the considerable associated complexity. That is to say, the contributory factors (e.g. demand signal processing, rationing/shortage gaming, order batching and price fluctuations) have to be viewed as interrelated components (as they are in practice) rather than stand-alone issues of a wider formulation, and this obviously increases the theoretical complexity of the problem. Analytical solutions cannot be developed unless some of the factors that contribute to the effect are isolated and tackled separately. In addition, and in order to facilitate the mathematical treatment of the problem, many assumptions need to be made, the validity (or universal applicability) of which has also been questioned. It is viewed as imperative to introduce novel holistic approaches in order to solve complex supply chain/ inventory problems, such as the Bullwhip effect. These complex problems demonstrate the industrial importance of inventory management and the considerable benefit that their solution may offer to modern organizations. Such a solution necessitates an inter-disciplinary approach to problem formulation and modelling and this is what out proposal introduces. There is evidence to suggest that the integration of System Dynamics models and cognitive maps constitutes a very promising approach to group model building and is particularly appropriate for supply chain models with significant behavioural components. The aim of this dedicated 3-month project is to re-conceptualise the complex problem of the Bullwhip effect through the integration of Cognitive Mapping and System Dynamics (stock and flow) modelling. Such an approach allows for the consideration of behavioural factors in addition to exploring interactions. Two such factors are highlighted in our research: i) judgemental changes to forecasts and ii) judgemental changes to replenishment orders. Both have been shown to prevail in industrial practices and they are appropriately incorporated in our models. In addition to researching the extent to which such models represent reality, we also intend to explore their potential to act as a training tool for those new to judgemental forecasting and, in the longer term, to change company policies.
这个项目涉及牛鞭效应的问题,即当我们在供应链中向后移动时放大库存的问题。几十年来,这种效应一直在学术文献中得到强调,不可否认,它吸引了大量的科学研究。然而,所有相关项目都只侧重于数量有限的促成因素,尚未建立综合模式。尽管这些工作对于我们理解供应链的行为非常重要,但在工业应用中,这个问题仍然普遍存在。解决相关问题的零散方法很可能是因为相关问题相当复杂。也就是说,促成因素(如需求信号处理、配给/短缺博弈、订单波动和价格波动)必须被视为相互关联的组成部分(如它们在实践中的情况),而不是更广泛表述的独立问题,这显然增加了问题的理论复杂性。除非将造成这一影响的某些因素孤立出来并分别加以处理,否则无法找到分析解决办法。此外,为了便于对问题进行数学处理,需要作出许多假设,这些假设的有效性(或普遍适用性)也受到质疑。为了解决复杂的供应链/库存问题,如牛鞭效应,必须引入新的整体方法。这些复杂的问题表明了库存管理的工业重要性,以及它们的解决方案可能为现代组织提供的巨大好处。这样的解决方案需要一个跨学科的方法来制定问题和建模,这就是我们的建议所介绍的。有证据表明,系统动力学模型和认知地图的集成构成了一个非常有前途的方法,以组模型的建设,特别是适合于供应链模型与重要的行为组件。这个为期3个月的专门项目的目的是通过整合认知映射和系统动力学(存量和流量)建模,重新概念化牛鞭效应的复杂问题。这种方法除了探讨相互作用外,还考虑到行为因素。我们的研究中强调了两个这样的因素:i)预测的判断性变化和ii)补货订单的判断性变化。这两种方法在工业实践中都很普遍,它们被适当地纳入了我们的模型。除了研究这些模型在多大程度上代表现实之外,我们还打算探索它们作为那些新的判断预测的培训工具的潜力,并从长远来看,改变公司政策。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Argyrios Syntetos其他文献

Argyrios Syntetos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Argyrios Syntetos', 18)}}的其他基金

Resilient remanufacturing networks: forecasting, informatics and holons
弹性再制造网络:预测、信息学和完整子
  • 批准号:
    EP/P008925/1
  • 财政年份:
    2017
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Research Grant
Commercialisation of an inventory management solution for intermittent demand items
针对间歇性需求商品的库存管理解决方案的商业化
  • 批准号:
    EP/G006075/1
  • 财政年份:
    2009
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Research Grant
Forecasting and Inventory Management: Bridging the Gap
预测和库存管理:弥合差距
  • 批准号:
    EP/F012632/1
  • 财政年份:
    2007
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Research Grant
On the Development of Theory-Informed Operationalised Definitions of Demand Patterns
论基于理论的需求模式可操作定义的发展
  • 批准号:
    EP/D062942/1
  • 财政年份:
    2006
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Research Grant

相似国自然基金

湘东北万古金矿成矿过程研究:黄铁矿原位硫同位素及微量元素Mapping指示
  • 批准号:
    2025JJ80016
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于T1 mapping技术的机器学习模型构建肥厚型心肌病心源性猝死风险预警平台
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI联合T1mapping组学构建II型糖尿病合并射血分数保留型心衰早诊模型及转归预警研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于MR2T-mapping成像评估复方芙蓉叶凝胶膏治疗膝关节滑膜炎疗效研究
  • 批准号:
    2024BJ015
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MRI mapping技术评估乳腺癌新辅助治疗后残余可疑强化灶 的价值分析
  • 批准号:
    2024JJ9297
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于LA-ICPMS Mapping技术的含普通铅矿物U-Pb定年方法研发
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    58 万元
  • 项目类别:
基于MR高分辨率弥散峰度及T2Mapping成像的影像组学模型术前无创预测子宫内膜癌侵袭性的研究
  • 批准号:
    2022J011425
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于DKI和Gd-EOB-DTPA增强T1-mapping评估化疗联合ALPPS术后肝脏再生能力的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于T1、T2 mapping和DWI定量成像技术在预测乳腺癌分子亚型临床价值初探
  • 批准号:
    2022J011501
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
利用酵母重组近交系的QTL_mapping检验细胞衰老的错误成灾学说
  • 批准号:
    32170635
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Standard Grant
Comprehending the intracellular mechanotransduction system by 3D mechano-mapping of the cytoskeleton
通过细胞骨架的 3D 力学映射理解细胞内力学转导系统
  • 批准号:
    23K18135
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Hybrid TMS/MRI system for regionally tailored causal mapping of human cortical circuits and connectivity
混合 TMS/MRI 系统,用于按区域定制人类皮质回路和连接的因果图谱
  • 批准号:
    10730783
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
AI based product mapping (AI-BPM) sub system inside Smart Price Checker (SPC)
智能价格检查器 (SPC) 内基于人工智能的产品映射 (AI-BPM) 子系统
  • 批准号:
    10070648
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Collaborative R&D
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Standard Grant
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
  • 批准号:
    10664289
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230944
  • 财政年份:
    2023
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Standard Grant
Data Mapping and Texturing in a Discrete Global Grid System
离散全球网格系统中的数据映射和纹理
  • 批准号:
    574803-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.09万
  • 项目类别:
    University Undergraduate Student Research Awards
A high speed pressure mapping system for non-invasive force distribution characterization
用于非侵入性力分布表征的高速压力绘图系统
  • 批准号:
    RTI-2023-00175
  • 财政年份:
    2022
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Research Tools and Instruments
Automated Dynamic Flow System for Efficient Mapping of Reaction Design Spaces
用于高效映射反应设计空间的自动动态流系统
  • 批准号:
    2751715
  • 财政年份:
    2022
  • 资助金额:
    $ 2.09万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了