BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
基本信息
- 批准号:10664289
- 负责人:
- 金额:$ 147.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAlzheimer&aposs DiseaseAnatomyArchitectureAtlasesAxonBrainBrain MappingBrain StemCell NucleusCellsComplexDataDevelopmentDiffusion Magnetic Resonance ImagingDiseaseEnrollmentExhibitsFascicleFiberFluorescenceFluorescence MicroscopyGoalsHistological TechniquesHumanImageImaging technologyImmunohistochemistryIndividualLabelLightMagnetic Resonance ImagingManualsMapsMeasurementMeasuresMicroscopicMicroscopyMolecularMorphologyMyelinMyelin SheathNeurologicNeuronsNuclearOptical Coherence TomographyPathway interactionsPatternPlanet EarthPropertyProtocols documentationResolutionSecureSliceStainsStructureSystemTechniquesTechnologyTextThickThree-dimensional analysisTissue ExpansionTissue imagingTissuesTraumatic Brain InjuryValidationVisualizationcell typecohortconnectomedeep learningdesignex vivo imaginghistological imagehuman tissuein vivoinnovationmetermicroscopic imagingmulti-scale atlasneuroimagingpreservationprogramsrapid techniquescale uptooltractographytwo-photonultra high resolution
项目摘要
Project Summary/Abstract (30 lines of text limit)
The ~1 billion neurons that form the human brainstem are organized at multiple scales, ranging from their cell
type-specific patterns of dendritic arborization, to local circuits embedded within large-scale projection systems
spanning the brainstem, and a complex nuclear architecture. In this project, we will image across this vast range
of scales to build technologies to create a multiscale atlas akin to Google Earth for the human brainstem to
visualize brainstem-wide networks and zoom in to the level of individual, labeled cells and their connectivity at
micrometer resolution within the context of individual nuclei. This dramatic advance will be made possible
through the use of an array of imaging technologies, including light-sheet fluorescence microscopy (LSFM),
tissue clearing, immunohisto-chemistry (IHC), 2-photon expansion microscopy (2PEM), magnetic resonance
imaging (MRI) and newly developed techniques in polarization-sensitive optical coherence tomography (PS-
OCT). PS-OCT in particular is a potentially transformative technology as it provides micrometer resolution over
large volumes of tissue, images all of the tissue (as opposed to fluorescence), does not require mounting and
staining, can be automated, is essentially distortion free as it images the tissue prior to cutting, and with
innovations we propose in our project, allows direct measures of 3D axonal orientation. LSM-based IHC will
provide molecular, morphological and spatial properties of cells and their projections that will enable us to nuclear
boundaries to place the connections in a nuclear context, 2PEM will provide direct validation of the 3D-PSOCT,
and the OCT will also enable us to remove the distortions induced by cutting and clearing, and transfer
information to intact brainstem and whole-hemisphere MRI for quantitative atlasing and in vivo inference.
项目摘要/摘要(30行文本限制)
形成人类脑干的~ 10亿个神经元在多个尺度上组织,从它们的细胞
特定类型的树枝状分支模式,到嵌入大规模投影系统的局部电路
以及复杂的核结构。在这个项目中,我们将在这个广阔的范围内
建立技术来创建一个类似于谷歌地球的多尺度地图集,
可视化脑干范围的网络,并放大到单个标记细胞及其连接的水平,
微米分辨率内的情况下,个别核。这一戏剧性的进步将成为可能
通过使用一系列成像技术,包括光片荧光显微镜(LSFM),
组织清除、免疫组化(IHC)、双光子膨胀显微镜(2 PEM)、磁共振
成像(MRI)和偏振敏感光学相干断层扫描(PS-
OCT)。特别是PS-OCT是一种潜在的变革性技术,因为它提供了微米级分辨率,
大体积的组织对所有组织成像(与荧光相反),不需要安装,
染色可以是自动化的,基本上是无失真的,因为它在切割之前对组织成像,
我们在项目中提出的创新,允许直接测量3D轴突方向。基于LSM的IHC将
提供细胞的分子、形态和空间特性及其投射,使我们能够
将连接置于核环境中的边界,2 PEM将提供3D-PSOCT的直接验证,
OCT还将使我们能够消除因切割和清理以及转移而引起的扭曲
完整的脑干和全半球MRI的定量图谱和体内推理的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Fischl其他文献
Bruce Fischl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Fischl', 18)}}的其他基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 147.18万 - 项目类别:
Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
- 批准号:
10658045 - 财政年份:2023
- 资助金额:
$ 147.18万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10373401 - 财政年份:2021
- 资助金额:
$ 147.18万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10525252 - 财政年份:2021
- 资助金额:
$ 147.18万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10224850 - 财政年份:2020
- 资助金额:
$ 147.18万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10038179 - 财政年份:2020
- 资助金额:
$ 147.18万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10295766 - 财政年份:2018
- 资助金额:
$ 147.18万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10063916 - 财政年份:2018
- 资助金额:
$ 147.18万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 147.18万 - 项目类别:
Continuing Grant