Next generation finite element methods for wave problems
波浪问题的下一代有限元方法
基本信息
- 批准号:EP/H004009/1
- 负责人:
- 金额:$ 101.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Efficient and accurate simulation of wave phenomena is a key enabling technology across science and engineering. Applications span diverse areas, and include the whole of acoustics and noise control, non-destructive testing and ultrasonic and microwave technologies for medical imaging, problems of seismic and radar propagation and imaging, and even quantum scale simulations. But even though the underlying partial differential equations are usually linear and well understood, wave phenomena are complex and hard to simulate whenever the wavelength is small compared to the diameter of the region to be simulated.A main and standard computational tool for simulations of wave problems is the so-called finite element method. The idea of the method is to break up the computational domain into small elements and to approximate the solution on each of them in a simple way, e.g. as a linear variation. However, this gives accurate solutions only if the diameter of each element is small compared to the wavelength. Thus the number of elements needed and the associated computational cost and storage is infeasible if the diameter of the region to be simulated is very large compared to the wavelength, as it is for very many complex problems of wave propagation and scattering, e.g. seismic wave propagation for hydrocarbon exploration.Recently, there has been strong international interest in novel finite element formulations that try to solve this problem by representing the wave field on each element by functions that are themselves waves. This allows much bigger element sizes and so a significant reduction of the computational cost. However, these novel finite element methods are still in their infancy and it is poorly understood how to implement them in an optimal way. For example, one key open problem is the question of which wave functions to use. Another open question is how to achieve numerical stability, i.e. an algorithm whose results are not garbled by effects resulting from the limited accuracy that computers have. These and other questions are particularly unclear for three dimensional problems, although most practical applications are three dimensional.The fellowship addresses this wide open research area. Building upon novel ideas about how to locally model wave phenomena in a stable way it combines fundamental research in diverse areas of applied and computational mathematics in order to develop the next generation of finite element methods for wave problems. These new methods have the potential to be orders of magnitude faster than current methods allowing for numerical simulations of phenomena that are currently out of reach. In close collaboration with partners in science and industry the new methods will be applied to exciting research problems in science and engineering. In particular, a major part of the hydrocarbon exploration business is enabled through the modelling and inversion of large scale 3D seismic and electromagnetic data sets, and Schlumberger Cambridge Research will be a key project partner. Throughout the fellowship annual international workshops on next generation finite element methods for wave problems will be organised, at Reading and Schlumberger. These will bring together leading researchers in the area of numerical wave simulations from academia and industry and will drive this research area forward by intensifying collaborations and developing and exploring application areas for these methods.Numerical wave simulations are an essential technology in science and engineering. Innovations in many areas depend upon the ability to simulate complex wave phenomena. The UK is one of the leading countries for wave-related research. This fellowship will enhance this role by building up an internationally outstanding research group on novel finite element methods for wave problems that will have a strong impact on wave-related research and applications long after the duration of the fellowship.
高效准确地模拟波浪现象是科学和工程领域的关键技术。应用范围广泛,包括声学和噪声控制、无损检测、超声和微波医学成像技术、地震和雷达传播和成像问题,甚至量子尺度模拟。但是,即使基本的偏微分方程通常是线性的,并且很容易理解,当波长与要模拟的区域的直径相比很小时,波动现象是复杂的,很难模拟。模拟波动问题的主要和标准计算工具是所谓的有限元法。该方法的思想是将计算域分解为小单元,并以简单的方式近似每个单元上的解,例如作为线性变化。然而,只有当每个元件的直径与波长相比很小时,这才能给出精确的解决方案。因此,如果要模拟的区域的直径与波长相比非常大,则所需的元件的数量以及相关联的计算成本和存储是不可行的,因为对于波传播和散射的非常多的复杂问题(例如,用于碳氢化合物勘探的地震波传播)是如此。国际上对新颖的有限元公式有着强烈的兴趣,这些有限元公式试图通过用本身是波的函数表示每个单元上的波场来解决这个问题。这允许更大的元素尺寸,因此显著降低了计算成本。然而,这些新的有限元方法仍处于起步阶段,人们对如何以最佳方式实现它们知之甚少。例如,一个关键的开放问题是使用哪种波函数的问题。另一个悬而未决的问题是如何实现数值稳定性,即一种算法,其结果不会受到计算机有限精度的影响。这些和其他问题是特别不清楚的三维问题,虽然大多数实际应用是三维的。基于如何以稳定的方式对波动现象进行局部建模的新思想,它结合了应用数学和计算数学不同领域的基础研究,以开发下一代波动问题的有限元方法。这些新方法有可能比目前的方法快几个数量级,从而可以对目前无法实现的现象进行数值模拟。在与科学和工业合作伙伴的密切合作下,新方法将应用于科学和工程领域令人兴奋的研究问题。特别是,碳氢化合物勘探业务的主要部分是通过大规模三维地震和电磁数据集的建模和反演实现的,斯伦贝谢剑桥研究院将成为关键的项目合作伙伴。在整个奖学金年度国际研讨会上的下一代有限元方法波问题将组织,在阅读和斯伦贝谢。这将汇集学术界和工业界在数值波浪模拟领域的领先研究人员,通过加强合作以及开发和探索这些方法的应用领域,推动该研究领域向前发展。数值波浪模拟是科学和工程中的重要技术。许多领域的创新取决于模拟复杂波动现象的能力。英国是波浪相关研究的主要国家之一。该奖学金将通过建立一个国际杰出的研究小组来加强这一作用,该研究小组将在奖学金结束后很长一段时间内对波浪相关研究和应用产生强烈影响。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Estimation of Coercivity Constants for Boundary Integral Operators in Acoustic Scattering
声散射边界积分算子矫顽力常数的数值估计
- DOI:10.1137/100788483
- 发表时间:2011
- 期刊:
- 影响因子:2.9
- 作者:Betcke T
- 通讯作者:Betcke T
Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation
声学中组合势积分算子的条件数估计及其边界元离散化
- DOI:10.1002/num.20643
- 发表时间:2010
- 期刊:
- 影响因子:3.9
- 作者:Betcke T
- 通讯作者:Betcke T
Numerical integration for high order pyramidal finite elements
- DOI:10.1051/m2an/2011042
- 发表时间:2010-03
- 期刊:
- 影响因子:0
- 作者:N. Nigam;J. Phillips
- 通讯作者:N. Nigam;J. Phillips
Spectral decompositions and nonnormality of boundary integral operators in acoustic scattering
声散射中边界积分算子的谱分解和非正态性
- DOI:10.1093/imanum/drt002
- 发表时间:2013
- 期刊:
- 影响因子:2.1
- 作者:Betcke T
- 通讯作者:Betcke T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timo Betcke其他文献
Frequency-robust preconditioning of boundary integral equations for acoustic transmission
- DOI:
10.1016/j.jcp.2022.111229 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Elwin van 't Wout;Seyyed R. Haqshenas;Pierre Gélat;Timo Betcke;Nader Saffari - 通讯作者:
Nader Saffari
A new application of the boundary element method to compute the single-scattering properties of complex ice crystals in the microwave
边界元法计算复杂冰晶微波单散射特性的新应用
- DOI:
10.1063/5.0183478 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anthony J. Baran;Antigoni Kleanthous;Timo Betcke;David P. Hewett;Christopher D. Westbrook - 通讯作者:
Christopher D. Westbrook
Numerical aspects of Casimir energy computation in acoustic scattering
- DOI:
10.1016/j.camwa.2024.06.024 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Xiaoshu Sun;Timo Betcke;Alexander Strohmaier - 通讯作者:
Alexander Strohmaier
Timo Betcke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timo Betcke', 18)}}的其他基金
Integrated Simulation at the Exascale: coupling, synthesis and performance
百亿亿级集成仿真:耦合、综合和性能
- 批准号:
EP/W007460/1 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
Research Grant
SysGenX: Composable software generation for system-level simulation at Exascale
SysGenX:用于百亿亿次系统级仿真的可组合软件生成
- 批准号:
EP/W026260/1 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
Research Grant
Reducing the Threat to Public Safety: Improved metallic object characterisation, location and detection
减少对公共安全的威胁:改进金属物体的特征、定位和检测
- 批准号:
EP/R002274/1 - 财政年份:2018
- 资助金额:
$ 101.38万 - 项目类别:
Research Grant
Next generation finite element methods for wave problems
波浪问题的下一代有限元方法
- 批准号:
EP/H004009/2 - 财政年份:2011
- 资助金额:
$ 101.38万 - 项目类别:
Fellowship
BEM++ - A high performance boundary element library
BEM - 高性能边界元库
- 批准号:
EP/I030042/1 - 财政年份:2011
- 资助金额:
$ 101.38万 - 项目类别:
Research Grant
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Group Generation: From Finite To Infinite
群生成:从有限到无限
- 批准号:
EP/X011879/1 - 财政年份:2023
- 资助金额:
$ 101.38万 - 项目类别:
Fellowship
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/3 - 财政年份:2022
- 资助金额:
$ 101.38万 - 项目类别:
Fellowship
Pre-Clinical Optimization of MeniscoFix, a Novel Total Meniscus Replacement Implant
MeniscoFix(一种新型全半月板置换植入物)的临床前优化
- 批准号:
10547466 - 财政年份:2022
- 资助金额:
$ 101.38万 - 项目类别:
On finite generation of symbolic Rees rings
符号里斯环的有限生成
- 批准号:
22K03256 - 财政年份:2022
- 资助金额:
$ 101.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10218941 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/2 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
Fellowship
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10541197 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10374927 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
- 批准号:
10323474 - 财政年份:2021
- 资助金额:
$ 101.38万 - 项目类别:
Invariable generation in finite groups with applications to algorithmic number theory
有限群中的不变生成及其在算法数论中的应用
- 批准号:
EP/T017619/1 - 财政年份:2020
- 资助金额:
$ 101.38万 - 项目类别:
Fellowship