Explicit Correspondences in Number Theory
数论中的明确对应
基本信息
- 批准号:EP/H00534X/1
- 负责人:
- 金额:$ 93.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most fundamental objects in Mathematics are the counting numbers 1,2,3,..., which are know as the Natural Numbers. They are such basic things that it may seem surprising that there is anything left to discover about them - and yet this apparent simplicity masks an amazingly complex structure which is far from being fully understood. Number Theory is, in essence, the study of the natural numbers.One type of question which Number Theorists ask is whether some equation can be solved - that is, whether there are natural numbers which make the equation correct and, if so, what they are. For some equations this can be straightforward, while for others, for example the equation in Fermat's famous Last Theorem , it can be exceedingly difficult -- in general, there is no way of knowing.A technique which has found much success when approaching difficult problems in Pure Mathematics is to try to rephrase the question in other terms - that is, to translate the question to another part of Mathematics. For example, Fermat's Last Theorem was finally solved by Wiles, first by translating the question to one about Elliptic Curves and then (which was the essence of Wiles' work) into one about Modular Forms .This latter correspondence sits in the middle of a vast web of predicted correspondences, named collectively after a Canadian Mathematician Robert Langlands. The Langlands Programme then seeks to establish these correspondences between Number Theory and an area of Pure Mathematics called Representation Theory. It is in this broad area that the project lies.Representation Theory, roughly speaking, seeks to describe mathematical objects in terms of symmetries. For example, the group {1,-1} can be thought of as the symmetries of a straight line: 1 fixes the line, while -1 reverses it (swaps the two ends). As the mathematical objects get more complicated, so too do the symmetries -- in the case of the objects which arise in the Langlands Programme, we get symmetries not in 1-, 2-, or 3-dimensional space, but in infinite-dimensional space! Recent work gives a very explicit description of some of the representations implicated in the programme and the aim of the project is to use this to describe parts of the Langlands correspondence in a very precise way. One would expect to be able to use this information to answer questions from Number Theory.
数学中最基本的对象是计数数1,2,3,.这就是所谓的自然数。它们是如此基本的东西,以至于似乎令人惊讶的是,关于它们还有什么东西有待发现-然而,这种表面上的简单掩盖了一种令人惊讶的复杂结构,这种结构还远远没有被完全理解。数论本质上是对自然数的研究。数论家问的一个问题是某个方程是否能解--也就是说,是否存在使方程正确的自然数,如果存在,它们是什么。对于某些方程来说,这可能很简单,而对于另一些方程,例如费马著名大定理中的方程,它可能极其困难--一般来说,没有办法知道。在解决纯数学中的困难问题时取得了很大成功的一种技术是尝试用其他术语重新表达问题--也就是说,将问题翻译为数学的另一部分。例如,费马大定理最终由怀尔斯解决,他首先把这个问题转化为椭圆曲线问题,然后(这是怀尔斯工作的精髓)转化为模形式问题,后者的对应关系位于一个巨大的预测对应关系网络的中间,这个网络以加拿大数学家罗伯特·朗兰兹的名字命名。朗兰兹纲领则试图在数论和纯数学的一个领域--表示论之间建立这些对应关系。这个项目就是在这一广阔的领域中展开的。粗略地说,表示论试图用对称性来描述数学对象。例如,群{1,-1}可以被认为是直线的对称:1固定直线,而-1反转直线(交换两端)。随着数学对象变得越来越复杂,对称性也变得越来越复杂--在朗兰兹纲领中出现的对象的情况下,我们得到的对称性不是在1维、2维或3维空间中,而是在无限维空间中!最近的工作给出了一个非常明确的描述的一些代表性牵连的方案和该项目的目的是用它来描述部分朗兰兹对应在一个非常精确的方式。人们希望能够使用这些信息来回答数论中的问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simple cuspidal representations of symplectic groups: Langlands parameter
辛群的简单尖头表示:朗兰兹参数
- DOI:10.48550/arxiv.2310.20455
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Blondel C
- 通讯作者:Blondel C
Automorphisms with exotic orbit growth
具有奇异轨道增长的自同构
- DOI:10.4064/aa158-2-5
- 发表时间:2013
- 期刊:
- 影响因子:0.7
- 作者:Baier S
- 通讯作者:Baier S
Jordan blocks of cuspidal representations of symplectic groups
辛群尖端表示的 Jordan 块
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Blondel C
- 通讯作者:Blondel C
On the Jacquet Conjecture on the local converse problem for -adic _{}
关于 -adic _{} 局部逆问题的 Jacquet 猜想
- DOI:10.1090/ert/476
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Adrian M
- 通讯作者:Adrian M
Towards the Jacquet conjecture on the Local Converse Problem for $p$-adic $\mathrm {GL}_n$
关于 $p$-adic $mathrm {GL}_n$ 局部逆问题的 Jacquet 猜想
- DOI:10.4171/jems/524
- 发表时间:2015
- 期刊:
- 影响因子:2.6
- 作者:Jiang D
- 通讯作者:Jiang D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaun Ainsley Ross Stevens其他文献
Shaun Ainsley Ross Stevens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaun Ainsley Ross Stevens', 18)}}的其他基金
Local theta correspondence: a new study through the theories of types and l-modular representations
局部 theta 对应:通过类型和 l 模表示理论进行的新研究
- 批准号:
EP/V061739/1 - 财政年份:2022
- 资助金额:
$ 93.81万 - 项目类别:
Research Grant
Explicit and l-modular theta correspondence
显式和 l-模 theta 对应
- 批准号:
EP/G001480/1 - 财政年份:2008
- 资助金额:
$ 93.81万 - 项目类别:
Research Grant
相似海外基金
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 93.81万 - 项目类别:
Continuing Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
- 批准号:
2310254 - 财政年份:2023
- 资助金额:
$ 93.81万 - 项目类别:
Standard Grant
Deriving Novel Bulk-Boundary Correspondences for Pseudo-Hermitian Systems
推导出伪厄米系统的新颖体边界对应关系
- 批准号:
20K03761 - 财政年份:2020
- 资助金额:
$ 93.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Crossmodal correspondences involving tastes
涉及品味的跨模式通信
- 批准号:
19K23384 - 财政年份:2019
- 资助金额:
$ 93.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Spectral correspondences for negatively curved Riemannian locally symmetric spaces
负弯曲黎曼局部对称空间的谱对应
- 批准号:
432944415 - 财政年份:2019
- 资助金额:
$ 93.81万 - 项目类别:
Research Grants
Evolutional origins of language explored through cross-modal correspondences
通过跨模态对应探索语言的进化起源
- 批准号:
19K12730 - 财政年份:2019
- 资助金额:
$ 93.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How do (or don’t) we learn letters-sound associations? Neurocognitive processes underlying the learning of Grapheme-Phoneme-Correspondences
我们如何(或不)学习字母-声音关联?
- 批准号:
405007295 - 财政年份:2018
- 资助金额:
$ 93.81万 - 项目类别:
Research Grants
RUI:Curve Counting Theories and Their Correspondences
RUI:曲线计数理论及其对应关系
- 批准号:
1810969 - 财政年份:2018
- 资助金额:
$ 93.81万 - 项目类别:
Continuing Grant
Elucidation of the role of crossmodal correspondences in the temporal integration of multisensory information.
阐明跨模态对应在多感官信息的时间整合中的作用。
- 批准号:
18K13370 - 财政年份:2018
- 资助金额:
$ 93.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
- 批准号:
402885-2012 - 财政年份:2017
- 资助金额:
$ 93.81万 - 项目类别:
Discovery Grants Program - Individual