Spectral correspondences for negatively curved Riemannian locally symmetric spaces

负弯曲黎曼局部对称空间的谱对应

基本信息

  • 批准号:
    432944415
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The central goal of this project is to describe Pollicott-Ruelle resonances of locally symmetric spaces using a - to be established - correspondence between these resonances and quantum resonances.There are close connections between the dynamical properties of a free particle on a negatively curved Riemannian locally symmetric space in the descriptions of classical and quantum mechanics. Such a connection can be described in terms of a correspondence map between so-called resonant states of the classical and the quantum system. For compact and convex cocompact hyperbolic surfaces this correspondence map is well understood and leads to linear isomorphisms between spaces of classical and quantum resonant states for given spectral parameters. For negatively curved locally symmetric spaces of higher dimension there are a number of obstacles to the extension of the results on compact and cocompact surfaces. One of these obstacles is that the Poisson transformation, which depends on a so-called spectral parameter and is of crucial importance in all descriptions of the spectral correspondence phenomena we want to study, is invertible only for generic parameters. In the case of surfaces the spectral correspondence could be established also for the exceptional parameters since one had enough explicit information on both sides to avoid the use of the Poisson transform. The main objective of this project is to extend the spectral correspondence for exceptional spectral parameters from the case of compact and cocompact hyperbolic surfaces to general locally symmetric spaces of rank one. In particular one looks for the topological information carried by the exceptional spectral parameters and the role they play in the description of the divisor of the Selberg zeta function. One can hope to obtain hints for what might be true in the case of manifolds of variable negative curvature without the strong symmetry conditions.
该项目的中心目标是使用这些共振和量子共振之间的(待建立的)对应关系来描述局部对称空间的波利科特-鲁埃尔共振。在经典力学和量子力学的描述中,负弯曲黎曼局部对称空间上的自由粒子的动力学性质之间存在密切的联系。这种联系可以用经典系统和量子系统的所谓共振态之间的对应图来描述。对于紧致和凸协紧双曲曲面,这种对应图很好理解,并且对于给定的光谱参数,可以得出经典谐振态空间和量子谐振态空间之间的线性同构。对于更高维度的负弯曲局部对称空间,在紧致和协紧曲面上扩展结果存在许多障碍。这些障碍之一是泊松变换仅对于通用参数是可逆的,泊松变换取决于所谓的谱参数,并且在我们想要研究的谱对应现象的所有描述中至关重要。在表面的情况下,也可以为特殊参数建立光谱对应关系,因为两侧都有足够的明确信息以避免使用泊松变换。该项目的主要目标是将特殊谱参数的谱对应关系从紧致和协紧双曲曲面的情况扩展到一般的一阶局部对称空间。特别是寻找特殊光谱参数所携带的拓扑信息以及它们在描述 Selberg zeta 函数除数中所扮演的角色。人们可以希望获得关于在没有强对称条件的情况下可变负曲率流形的情况下可能成立的线索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Hilgert其他文献

Professor Dr. Joachim Hilgert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Hilgert', 18)}}的其他基金

Transfer operators via semiclassical methods
通过半经典方法传递算子
  • 批准号:
    252019602
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynanische Interpretation von Patterson-Sullivan Distributionen
Patterson-Sullivan 分布的动态解释
  • 批准号:
    202158547
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Branching laws for 1-parameter families of representations of Lie groups and their asymptotic behavior
李群表示的 1 参数族的分支定律及其渐近行为
  • 批准号:
    121466542
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Dynamische Zetafunktionen für Gitterspinsysteme: qualitative und quantitative Untersuchungen der Null- und Polstellen
晶格自旋系统的动态 zeta 函数:零位和极位的定性和定量研究
  • 批准号:
    5421279
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
  • 批准号:
    2302208
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deriving Novel Bulk-Boundary Correspondences for Pseudo-Hermitian Systems
推导出伪厄米系统的新颖体边界对应关系
  • 批准号:
    20K03761
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crossmodal correspondences involving tastes
涉及品味的跨模式通信
  • 批准号:
    19K23384
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Evolutional origins of language explored through cross-modal correspondences
通过跨模态对应探索语言的进化起源
  • 批准号:
    19K12730
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How do (or don’t) we learn letters-sound associations? Neurocognitive processes underlying the learning of Grapheme-Phoneme-Correspondences
我们如何(或不)学习字母-声音关联?
  • 批准号:
    405007295
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
RUI:Curve Counting Theories and Their Correspondences
RUI:曲线计数理论及其对应关系
  • 批准号:
    1810969
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Elucidation of the role of crossmodal correspondences in the temporal integration of multisensory information.
阐明跨模态对应在多感官信息的时间整合中的作用。
  • 批准号:
    18K13370
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Serre-type conjectures and mod p Langlands correspondences
Serre 型猜想和 mod p Langlands 对应
  • 批准号:
    402885-2012
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Katok-Sarnak type correspondences and their applications
Katok-Sarnak型对应关系及其应用
  • 批准号:
    17K05175
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了