Sequential Monte Carlo Smoothing with Finite Set Statistics

有限集统计的顺序蒙特卡罗平滑

基本信息

  • 批准号:
    EP/H010866/1
  • 负责人:
  • 金额:
    $ 12.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

There has been considerable interest in stochastic filtering and smoothing in the last half-century, motivated by the discovery in 1960 of the solution to the linear filtering problemby Kalman. Applications of this work were found almost immediately through the incorporation into NASA's Apollo navigation computer for trajectory estimation. The importance of Kalman's discovery is illustrated by the the impact it has had in control theory, probability theory, financial mathematics, and signal processing. Since the 1960's, soon after the solutions to various filtering problems came corresponding solutions to the smoothing problems. More recent work on non-linear filtering and smoothing has been inspired by sequential Monte Carlo theory.Stochastic filtering, prediction, and smoothing are fundamental concepts in the theory of estimation of dynamic systems. The system is a partially observed physical object whose behaviour over time is governed by a set of equations modelling the dynamics and the relationship between the observations and the object state. Uncertainty in the system is due to the noisy nature of the problem, either from unknown and unpredictable motion of the system, or from inaccuracy in observing measurements of the system through a noisy sensor. Filtering, prediction and smoothing are precise mathematical descriptionsof the problem of estimating the state of the system based on noisy observations of its behaviour over time: Prediction is the forecasting of the state of the system at some future point in time based on measurements up to the current time. Filtering is the estimation at each point in time of the state of the system based on all of the measurements up to that point. Typically prediction and filtering are used together to form a set of recursive equations for predicting and updating the estimate of the state of a system. Smoothing differs from prediction and filtering in that the estimate of the state of the system at a specific point in time can be determined from a batch of measurements, some of which may be collected later than the time that we are interested in. This means that there is inevitably a delay in producing the estimate of the state at that time, though more accurate estimates can be obtained since more information is available about the system.Despite the wealth of research in single-object filtering, a mathematically principled generalisation of filtering concepts to multi-object systems is a recent development, formulated in the framework of Finite Set Statistics (FISST) motivated by the problem of multiple-target tracking in aerospace applications. The purpose of multiple target tracking algorithms is to detect, track and identify targets from sequences of noisy observations of the targets provided by one or more sensors. This problem is complicated by the fact that these observations tend to have many false alarms and targets may not always give rise to observations. The extension from a single-target scenario to a multiple-target environment is non-trivial since the number of targets may not be known and varies with time, there are missed detections where the target is not observed and observations may be false alarms due to clutter. In addition, the identities of the targets may need to be known to determine their trajectories. This work will develop new methodologies for smoothing of multi-object systems. This work proposed here aims to investigate multi-object smoothers for jointly estimating the number of objects and their state vectors in environments where there can be many false alarms and the targets are not always observed. Solutions to this problem could lead the way to practical implementations using sequential Monte Carlo approximations. The successful solution to this problem would be directly applicable to a range of industrial multi-sensor multi-target tracking problems in many sensor applications including radar, electro-optics and sonar.
在过去的半个世纪里,由于卡尔曼在1960年发现了线性滤波问题的解决方案,人们对随机滤波和平滑产生了相当大的兴趣。这项工作的应用几乎立即被发现,通过纳入美国宇航局的阿波罗导航计算机的轨迹估计。卡尔曼发现的重要性可以通过它在控制论、概率论、金融数学和信号处理中的影响来说明。自20世纪60年代以来,在各种滤波问题的解决方案之后不久,就出现了相应的平滑问题的解决方案。最近的非线性滤波和平滑的工作受到序贯蒙特卡罗理论的启发。随机滤波、预测和平滑是动态系统估计理论中的基本概念。该系统是一个部分观测的物理对象,其行为随时间的推移是由一组方程建模的动态和观测和对象状态之间的关系。系统中的不确定性是由于问题的噪声性质,或者来自系统的未知和不可预测的运动,或者来自通过噪声传感器观察系统的测量的不准确性。滤波、预测和平滑是基于对系统随时间变化的行为的噪声观测来估计系统状态的问题的精确数学解释:预测是基于到当前时间的测量来预测系统在未来某个时间点的状态。滤波是基于直到该点的所有测量在每个时间点估计系统的状态。通常,预测和滤波一起使用以形成用于预测和更新系统的状态的估计的递归方程组。平滑与预测和滤波的不同之处在于,可以根据一批测量值来确定特定时间点系统状态的估计,其中一些测量值可能是在我们感兴趣的时间之后收集的。这意味着在产生当时状态的估计时不可避免地存在延迟,尽管可以获得更准确的估计,因为可以获得关于系统的更多信息。尽管在单对象滤波方面有大量的研究,但将滤波概念数学上原则性地推广到多对象系统是最近的发展,在有限集统计(FISST)的框架内制定的多目标跟踪在航空航天应用中的问题的动机。多目标跟踪算法的目的是从由一个或多个传感器提供的目标的噪声观测序列中检测、跟踪和识别目标。这个问题是复杂的事实,这些观察往往有许多假警报和目标可能并不总是引起观察。从单目标场景到多目标环境的扩展是不平凡的,因为目标的数量可能是未知的并且随时间变化,存在未观测到目标的漏检测,并且观测可能是由于杂波引起的假警报。此外,可能需要知道目标的身份以确定其轨迹。这项工作将开发新的方法来平滑多目标系统。这里提出的这项工作的目的是研究多对象平滑器,用于联合估计的对象和它们的状态向量的数量在环境中,可能有许多虚警和目标并不总是观察到。这个问题的解决方案可能会导致实际的实施方式,使用顺序蒙特卡罗近似。该问题的成功解决方案将直接适用于许多传感器应用(包括雷达、光电和声纳)中的一系列工业多传感器多目标跟踪问题。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the ordering of the sensors in the iterated-corrector probability hypothesis density (PHD) filter
  • DOI:
    10.1117/12.884618
  • 发表时间:
    2011-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Nagappa;Daniel E. Clark
  • 通讯作者:
    S. Nagappa;Daniel E. Clark
Adaptive Target Birth Intensity for PHD and CPHD Filters
A Tractable Forward- Backward CPHD Smoother
Fast sequential Monte Carlo PHD smoothing
Incorporating track uncertainty into the OSPA metric
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Clark其他文献

Design of first experiment to achieve fusion target gain > 1
实现融合目标增益 > 1 的第一个实验设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kritcher;Dave Schlossberg;C. Weber;Chris Young;E. Dewald;Alex Zylstra;O. Hurricane;A. Allen;Ben Bachmann;Kevin Baker;S. Baxamusa;Tom Braun;Gordon Brunton;Debbie Callahan;Dan Casey;Tom Chapman;Chris Choate;Daniel Clark;Jean;L. Divol;John Edwards;Steve Haan;T. Fehrenbach;S. Hayes;D. Hinkel;M. Hohenberger;K. Humbird;Oggie Jones;E. Kur;B. Kustowski;Casey Kong;O. Landen;Doug Larson;Xavier Lepro Chavez;J. Lindl;Brian MacGowan;Steve Maclaren;M. Marinak;Marius Millot;A. Nikroo;Ryan Nora;Art Pak;Prav Patel;Joseph Ralph;Mark Ratledge;M. Rubery;S. Sepke;M. Stadermann;D. Strozzi;T. Suratwala;Riccardo Tommasini;R. Town;B. Woodworth;Bruno Van Wonterghem;Christoph Wild
  • 通讯作者:
    Christoph Wild
Congenital Cutaneous Candidiasis
先天性皮肤念珠菌病
  • DOI:
    10.1001/archpedi.1975.02120470059017
  • 发表时间:
    1964
  • 期刊:
  • 影响因子:
    26.1
  • 作者:
    H. Sonnenschein;C. Taschdjian;Daniel Clark
  • 通讯作者:
    Daniel Clark
Object detection and tracking using a parts-based approach
使用基于部件的方法进行对象检测和跟踪
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Clark
  • 通讯作者:
    Daniel Clark
1962 DOSE-RELATED EFFECT OF SHOCK WAVE NUMBER ON RENAL OXIDATIVE STRESS AND INFLAMMATION AFTER SHOCK WAVE LITHOTRIPSY
  • DOI:
    10.1016/j.juro.2010.02.1972
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Clark;Rajash Handa;Cynthia Johnson;Bret Connors;Andrew Evan;Sujuan Gao
  • 通讯作者:
    Sujuan Gao
IL8 Gene Polymorphism SNP rs4073 analysis between HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis and HTLV-1 Carriers
  • DOI:
    10.1186/1742-4690-12-s1-o36
  • 发表时间:
    2015-08-28
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jorge Rúa;Jason Rosado;Giovanni Lopez;Carolina Alvarez;Daniel Clark;Eduardo Gotuzzo;Michael Talledo
  • 通讯作者:
    Michael Talledo

Daniel Clark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Clark', 18)}}的其他基金

CAREER: New Metal Catalyzed Reactions for Trans-Alkynevinylation
职业生涯:新金属催化的反炔乙烯基化反应
  • 批准号:
    1352432
  • 财政年份:
    2014
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Continuing Grant
Generic Distributed Target Tracking Algorithms in Sensor Networks with Finite Set Statistics
具有有限集统计的传感器网络中的通用分布式目标跟踪算法
  • 批准号:
    EP/H011900/1
  • 财政年份:
    2010
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Research Grant

相似国自然基金

DDH头臼匹配性三维空间形态表征及PAO 手术髋臼重定向Monte Carlo随机最优控 制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
  • 批准号:
    12372297
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
复杂空间上具有特殊约束的Monte Carlo方法
  • 批准号:
    12371269
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于Monte Carlo模拟的铒基稀土高掺杂纳米材料上转换发光过程的机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嵌段共聚物在软硬壁组成的受限空间中的诱导自组装行为的Monte Carlo 研究
  • 批准号:
    21863010
  • 批准年份:
    2018
  • 资助金额:
    41.0 万元
  • 项目类别:
    地区科学基金项目
间接优化的高效Monte Carlo声传播研究
  • 批准号:
    61772458
  • 批准年份:
    2017
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目
基于Monte Carlo法强化管表面颗粒-析晶垢形成机理及预测模型研究
  • 批准号:
    51606049
  • 批准年份:
    2016
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
任意各向异性三维直流电阻率巷道超前探测的并行Monte Carlo方法研究
  • 批准号:
    41674076
  • 批准年份:
    2016
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Real-time phylogenetics using sequential Monte Carlo with tree sequences
使用顺序蒙特卡罗和树序列进行实时系统发育
  • 批准号:
    EP/W006790/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Research Grant
Sequential Monte Carlo Methods for Model Based Reinforcement Learning
基于模型的强化学习的顺序蒙特卡罗方法
  • 批准号:
    573681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Online topic modelling via sequential Monte Carlo methods
通过顺序蒙特卡罗方法进行在线主题建模
  • 批准号:
    563714-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 12.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Solving the sampling problem in molecular simulations by Sequential Monte Carlo
用顺序蒙特卡罗解决分子模拟中的采样问题
  • 批准号:
    EP/V048864/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Research Grant
Advances in Sequential Monte Carlo Methods for Complex Bayesian Models
复杂贝叶斯模型的顺序蒙特卡罗方法的进展
  • 批准号:
    DP200102101
  • 财政年份:
    2020
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Discovery Projects
Robust, Scalable Sequential Monte Carlo with Application To Urban Air Quality
稳健、可扩展的顺序蒙特卡罗在城市空气质量中的应用
  • 批准号:
    EP/T004134/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Research Grant
New Sequential Monte Carlo methods
新的顺序蒙特卡罗方法
  • 批准号:
    527760-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Research Initiation Awards: Spatial-temporal Information Fusion and Real-time Sensor Data Assimilation Using Sequential Monte Carlo Methods
研究启动奖:使用序列蒙特卡罗方法的时空信息融合和实时传感器数据同化
  • 批准号:
    1238332
  • 财政年份:
    2013
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Standard Grant
Sequential Monte Carlo in Random Environments
随机环境中的顺序蒙特卡罗
  • 批准号:
    EP/K023330/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Research Grant
Research Initiation Awards: Spatial-temporal Information Fusion and Real-time Sensor Data Assimilation Using Sequential Monte Carlo Methods
研究启动奖:使用序列蒙特卡罗方法的时空信息融合和实时传感器数据同化
  • 批准号:
    1356977
  • 财政年份:
    2013
  • 资助金额:
    $ 12.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了