Hamiltonian-based data clustering and classification
基于哈密顿量的数据聚类和分类
基本信息
- 批准号:EP/H011811/1
- 负责人:
- 金额:$ 13.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For any extended entities such as convoys of vehicles, crowds of people, dust clouds or even rigid vehicles seen at close range, data clustering is an essential step in data processing and it is at the core of data recognition, classification and tracking procedures. Observations of such diffuse entities will generally be represented by points in a properly defined space. These points may represent observations of position, activity or other attributes, associated with the data. Over time, further points will be observed that need not necessarily correspond to any of the same features seen previously.Conventionally, the initial task in understanding such data is to find relations between the points to partition the observations into groups (i.e. the clusters) with similar features that define the entity to be tracked. Such clustering algorithms generally perform the classification on the basis of the relative displacements of the points in the observation space and/or on the basis of a library of known reference objects. Conventional clustering algorithms are easier to implement, and more reliable, if the number of clusters is known in advance, if the objects to be classified belong to a set of known objects, and if the cluster is stable in time. If this is not the case, the algorithm has to solve also the so-called cluster validation problem and has to adaptively generate a library of objects against which to perform the classification.Such convential approaches are sensitive to noise, under-sampling, presence of echoes and temporary data drop-outs, which would be typical of situations of uncooperative, diffuse observations. This proposal concerns a new approach to segmentation and tracking such extended objects characterised by sparse observations over extended times.We propose to develop a novel dynamic clustering algorithm: the clusters are identified as the level sets corresponding to a reference value of a clustering function.The core idea is to construct the clustering function from observations and to regard the clustering function as the generator of a Hamiltonian dynamical system, the trajectories of which describe the clusters. While the notion of clustering function is standard, the use of Hamiltonian dynamics provides an original perspective and several advantages. These include the possibility to compute on-line geometric features of the clusters, to represent their dynamics with reduced order models, and to identify their dynamical behaviour.
对于任何扩展的实体,例如车辆车队,人群,灰尘云甚至近距离看到的刚性车辆,数据聚类是数据处理的重要步骤,也是数据识别,分类和跟踪程序的核心。对这种扩散实体的观察通常由适当定义的空间中的点表示。这些点可以表示与数据相关联的位置、活动或其他属性的观察。随着时间的推移,将观察到更多的点,这些点不一定对应于先前看到的任何相同特征。传统上,理解此类数据的初始任务是找到点之间的关系,以将观察结果划分为具有定义待跟踪实体的相似特征的组(即,聚类)。这种聚类算法通常基于观察空间中的点的相对位移和/或基于已知参考对象的库来执行分类。如果预先知道簇的数量,如果待分类的对象属于一组已知对象,并且如果簇在时间上是稳定的,则传统的聚类算法更容易实现,也更可靠。如果不是这样的话,算法还必须解决所谓的聚类验证问题,并且必须自适应地生成一个对象库来执行分类。这种传统的方法对噪声,欠采样,回波的存在和临时数据丢失很敏感,这是典型的不合作,分散观测的情况。该建议涉及一种新的方法来分割和跟踪这样的扩展对象,其特征在于在扩展时间上的稀疏观测。我们提出开发一种新的动态聚类算法:该方法的核心思想是从观测值构造聚类函数,并将聚类函数看作是Hamilton动力学的生成元系统,其轨迹描述集群。虽然聚类函数的概念是标准的,但Hamilton动力学的使用提供了一个原始的视角和几个优点。这些措施包括可能性计算在线的几何特征的集群,以表示其动态与降阶模型,并确定其动态行为。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gaussian Based Classification with Application to the Iris Data Set**
基于高斯的分类及其在虹膜数据集上的应用**
- DOI:10.3182/20110828-6-it-1002.02644
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Chang H
- 通讯作者:Chang H
Application of Hamiltonian dynamics to manipulator control in constrained workspace
哈密顿动力学在受限工作空间机械臂控制中的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Daniele Casagrande (Author)
- 通讯作者:Daniele Casagrande (Author)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Astolfi其他文献
Realization from Moments: The Linear Case
时刻的实现:线性情况
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jin Gyu Lee;Alessandro Astolfi - 通讯作者:
Alessandro Astolfi
Adaptive Control of the Power Factor Precompensator: A Comparative Study
- DOI:
10.1016/s1474-6670(17)41628-4 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:
- 作者:
Georgia Kaliora;Alessandro Astolfi - 通讯作者:
Alessandro Astolfi
Algebraic and Persistency-of-Excitaion Conditions for Stability of Linear Periodic Systems
- DOI:
10.1016/s1474-6670(17)30460-3 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:
- 作者:
Alessandro Astolfi;Antonio Loría - 通讯作者:
Antonio Loría
Data-Driven Model Reduction by Moment Matching for Linear Systems Driven by an Unknown Implicit Signal Generator
通过未知隐式信号发生器驱动的线性系统的矩匹配来简化数据驱动模型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Debraj Bhattacharjee;Alessandro Astolfi - 通讯作者:
Alessandro Astolfi
On the Robustness of a Family of Discontinuous Controllers
- DOI:
10.1016/s1474-6670(17)36252-3 - 发表时间:
2000-09-01 - 期刊:
- 影响因子:
- 作者:
Enrico Valtolina;Alessandro Astolfi - 通讯作者:
Alessandro Astolfi
Alessandro Astolfi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Astolfi', 18)}}的其他基金
Tutorials and Workshop: ANALYSIS AND DESIGN OF NONLINEAR CONTROL SYSTEMS
教程和研讨会:非线性控制系统的分析和设计
- 批准号:
EP/F043090/1 - 财政年份:2008
- 资助金额:
$ 13.92万 - 项目类别:
Research Grant
Nonlinear observation theory with applications to Markov jump systems
非线性观测理论及其在马尔可夫跳跃系统中的应用
- 批准号:
EP/E057438/1 - 财政年份:2007
- 资助金额:
$ 13.92万 - 项目类别:
Research Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Continuing Grant
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Collaborative R&D
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
- 批准号:
10114149 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
SME Support
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Discovery Projects
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
- 批准号:
2327379 - 财政年份:2024
- 资助金额:
$ 13.92万 - 项目类别:
Standard Grant