Mode, accuracy and credibility in court interpreting
法庭口译的方式、准确性和可信度
基本信息
- 批准号:DP170100634
- 负责人:
- 金额:$ 19.13万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2017
- 资助国家:澳大利亚
- 起止时间:2017-03-30 至 2022-05-01
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to examine factors affecting the accuracy of interpreting and the effect of interpreters on witness credibility. Judicial cases rely on oral evidence. Witness credibility is assessed based on the content of the testimony and the speaker’s demeanour. When witnesses do not speak English, their credibility is evaluated through an interpreter. Inaccurate interpretations can result in miscarriages of justice, making accuracy of interpretation essential. This project aims to provide empirical evidence to support best practice and a basis for policy recommendations to courts to enhance the fairness of the justice system for all members of the community, regardless of language and background.
本研究旨在探讨影响传译准确性的因素,以及传译员对证人可信度的影响。司法案件依靠口头证据。证人的可信度是根据证词的内容和发言者的举止来评估的。如果证人不讲英语,则通过口译员评估其可信度。不准确的解释可能导致误判,因此解释的准确性至关重要。该项目旨在提供经验证据,以支持最佳做法,并为向法院提出政策建议提供依据,以加强司法制度对所有社区成员的公平性,而不论其语言和背景如何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Sandra Hale其他文献
Prof Sandra Hale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Sandra Hale', 18)}}的其他基金
Participation in the administration of justice: deaf citizens as jurors
参与司法:聋哑公民担任陪审员
- 批准号:
LP120200261 - 财政年份:2012
- 资助金额:
$ 19.13万 - 项目类别:
Linkage Projects
Interpreters in court: witness credibility with interpreted testimony
法庭上的口译员:证人的可信度与口译证词
- 批准号:
LP110200394 - 财政年份:2011
- 资助金额:
$ 19.13万 - 项目类别:
Linkage Projects
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
- 批准号:
BB/X018563/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
- 批准号:
BB/X018660/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
- 批准号:
2335170 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
- 批准号:
10099483 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Collaborative R&D














{{item.name}}会员




