The Spectroscopy of Antihydrogen
反氢的光谱学
基本信息
- 批准号:EP/H026932/1
- 负责人:
- 金额:$ 251.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding and explaining the origin and evolution of our Universe has been at the heart of scientific endeavour for centuries. Recent decades have seen spectacular advances, as particle physics and cosmology have combined to provide the beginnings of a coherent picture. Our Universe seems to have been born in a cataclysmic event called the Big Bang, and has continuously evolved over the 13-14 billion years since then. Though much of the visible Universe can be explained, there are still many very profound mysteries, and none more so than that posed by the existence of antimatter.Simply put, antimatter remains a mystery to Physics. Whilst the symmetry of the laws of nature, and in particular quantum mechanics, demands its existence, the Universe appears to be composed entirely of matter. Addressing this conundrum is one of the great challenges of basic science. As the hot Universe cooled shortly after the Big Bang it appears that all of the antimatter vanished, leaving a tiny excess of matter. At one part in a billion, this doesn't sound much, but the entire material Universe is created from it. The problem is we don't understand how this came to be. There are asymmetries in the behaviour of matter and antimatter, but they are too small by many orders of magnitude to account for the existence of the Universe. One way to address this problem, and the way we have chosen, is to study the antihydrogen atom - the building block of antimatter, and an atom that the Universe never got the chance to make. Recent years have seen great progress in our capabilities with low energy antiparticles (antiprotons and positrons). We can routinely collect many of them in vacuum and store them until we are ready to gently mix them to form antihydrogen under very controlled conditions.Although this capability has opened up great opportunities, there is still much work to be done before the properties of antihydrogen can be compared to those of hydrogen. In this project we will begin along this road by performing a series of experiments on antihydrogen atoms which we have manufactured and trapped in a special device. The apparatus has several parts, but the most important is a trap which can hold neutral species, such as antihydrogen. The trap is formed by magnetic fields from a complicated coil arrangement that forms a magnetic field minimum in the centre of the antihydrogen production region. Antihydrogen, like hydrogen, has a tiny magnetic moment - think of the orbiting positron as a minute current loop - which means that the energy levels shift in an applied magnetic field. Those atoms whose potential energy increases in the field will prefer to sit at the magnetic field minimum, and will be trapped.The depth of the trap is very shallow, just below the equivalent of one degree Kelvin, so we have to make our anti-atoms under very controlled conditions. Once they are trapped we will shine photons on them to interrogate their internal structure. First experiments are likely to be with microwaves, which will help us to compare with the famous 21 cm line of hydrogen. Eventually we will be able to shine laser light onto the antihydrogen.If any differences between the properties of hydrogen and antihydrogen are found, we will have discovered new physics, and perhaps come some way along the road to discovering what happened to antimatter in the early Universe.
几个世纪以来,理解和解释宇宙的起源和演化一直是科学事业的核心。近几十年来,粒子物理学和宇宙学相结合,提供了连贯图景的开端,取得了惊人的进步。我们的宇宙似乎是在一场名为“大爆炸”的灾难性事件中诞生的,并从那时起在 13-140 亿年的时间里不断演化。尽管大部分可见宇宙都可以解释,但仍然存在许多非常深刻的谜团,其中最重要的是反物质的存在所带来的谜团。简而言之,反物质对于物理学来说仍然是一个谜。虽然自然定律,特别是量子力学的对称性要求它的存在,但宇宙似乎完全由物质组成。解决这个难题是基础科学面临的巨大挑战之一。随着大爆炸后不久炎热的宇宙冷却,所有反物质似乎都消失了,留下了少量多余的物质。十亿分之一,这听起来不多,但整个物质宇宙都是由它创造的。问题是我们不明白这是怎么发生的。物质和反物质的行为存在不对称性,但它们太小了许多数量级,无法解释宇宙的存在。解决这个问题的一种方法,也是我们选择的方法,是研究反氢原子——反物质的组成部分,也是宇宙从未有机会制造的原子。近年来,我们在低能反粒子(反质子和正电子)方面的能力取得了巨大进步。我们可以常规地在真空中收集并储存它们,直到我们准备好在非常受控的条件下轻轻混合它们以形成反氢。尽管这种能力开辟了巨大的机会,但在将反氢的性质与氢进行比较之前,仍然有很多工作要做。在这个项目中,我们将沿着这条道路开始,对我们制造并捕获在特殊装置中的反氢原子进行一系列实验。该装置有几个部分,但最重要的是一个可以容纳中性物质的陷阱,例如反氢。该陷阱是由复杂线圈布置的磁场形成的,该线圈布置在反氢产生区域的中心形成最小磁场。反氢与氢一样,具有微小的磁矩 - 将轨道正电子视为微小的电流环 - 这意味着能级会在施加的磁场中发生变化。那些在场中势能增加的原子会更倾向于位于磁场最小值处,并被捕获。陷阱的深度非常浅,仅低于一开尔文温度,因此我们必须在非常受控的条件下制造我们的反原子。一旦它们被困住,我们就会向它们照射光子以询问它们的内部结构。第一个实验可能会使用微波,这将帮助我们与著名的 21 厘米氢谱线进行比较。最终我们将能够将激光照射到反氢上。如果发现氢和反氢的性质之间存在任何差异,我们将发现新的物理学,并且可能在发现早期宇宙中反物质发生了什么的道路上取得进展。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antihydrogen accumulation for fundamental symmetry tests.
- DOI:10.1038/s41467-017-00760-9
- 发表时间:2017-09-25
- 期刊:
- 影响因子:16.6
- 作者:Ahmadi M;Alves BXR;Baker CJ;Bertsche W;Butler E;Capra A;Carruth C;Cesar CL;Charlton M;Cohen S;Collister R;Eriksson S;Evans A;Evetts N;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Ishida A;Johnson MA;Jones SA;Jonsell S;Kurchaninov L;Madsen N;Mathers M;Maxwell D;McKenna JTK;Menary S;Michan JM;Momose T;Munich JJ;Nolan P;Olchanski K;Olin A;Pusa P;Rasmussen CØ;Robicheaux F;Sacramento RL;Sameed M;Sarid E;Silveira DM;Stracka S;Stutter G;So C;Tharp TD;Thompson JE;Thompson RI;van der Werf DP;Wurtele JS
- 通讯作者:Wurtele JS
Silicon vertex detector upgrade in the ALPHA experiment
- DOI:10.1016/j.nima.2013.05.188
- 发表时间:2013-12-21
- 期刊:
- 影响因子:1.4
- 作者:Amole, C.;Andresen, G. B.;Wells, D.
- 通讯作者:Wells, D.
An experimental limit on the charge of antihydrogen.
- DOI:10.1038/ncomms4955
- 发表时间:2014-06-03
- 期刊:
- 影响因子:16.6
- 作者:Amole C;Ashkezari MD;Baquero-Ruiz M;Bertsche W;Butler E;Capra A;Cesar CL;Charlton M;Eriksson S;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Jonsell S;Kurchaninov L;Little A;Madsen N;McKenna JT;Menary S;Napoli SC;Nolan P;Olchanski K;Olin A;Povilus A;Pusa P;Rasmussen CØ;Robicheaux F;Sarid E;Silveira DM;So C;Tharp TD;Thompson RI;van der Werf DP;Vendeiro Z;Wurtele JS;Zhmoginov AI;Charman AE
- 通讯作者:Charman AE
In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap
- DOI:10.1088/1367-2630/16/1/013037
- 发表时间:2014-01-21
- 期刊:
- 影响因子:3.3
- 作者:Amole, C.;Ashkezari, M. D.;Wurtele, J. S.
- 通讯作者:Wurtele, J. S.
The ALPHA antihydrogen trapping apparatus
- DOI:10.1016/j.nima.2013.09.043
- 发表时间:2014-01-21
- 期刊:
- 影响因子:1.4
- 作者:Amole, C.;Andresen, G. B.;Yamazaki, Y.
- 通讯作者:Yamazaki, Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mike Charlton其他文献
Exciting antiprotons
令人兴奋的反质子
- DOI:
10.1038/475459a - 发表时间:
2011-07-27 - 期刊:
- 影响因子:48.500
- 作者:
Mike Charlton - 通讯作者:
Mike Charlton
Exciting antiprotons
令人兴奋的反质子
- DOI:
10.1038/475459a - 发表时间:
2011-07-27 - 期刊:
- 影响因子:48.500
- 作者:
Mike Charlton - 通讯作者:
Mike Charlton
On the binding energies of antihydrogen formed by the interactions of antiprotons in cold positron plasmas
冷正电子等离子体中反质子相互作用形成反氢的结合能
- DOI:
10.1088/1361-6455/abcded - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Svante Jonsell;Mike Charlton - 通讯作者:
Mike Charlton
Mike Charlton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mike Charlton', 18)}}的其他基金
Physics with Trapped Antihydrogen
俘获反氢物理学
- 批准号:
EP/L014718/1 - 财政年份:2014
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Ionization of Atomic Hydrogen by Low Energy Antiprotons
低能反质子对原子氢的电离
- 批准号:
EP/I005692/1 - 财政年份:2010
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Ionization of Atomic Hydrogen by Low Energy Antiprotons
低能反质子对原子氢的电离
- 批准号:
EP/G068968/1 - 财政年份:2009
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Ionization of Atomic Hydrogen and Helium by Low Energy Antiprotons
低能反质子对原子氢和氦的电离
- 批准号:
EP/F033885/1 - 财政年份:2007
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Trapped Antihydrogen - Towards Spectroscopy
被捕获的反氢 - 走向光谱学
- 批准号:
EP/D038707/1 - 财政年份:2006
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Ionisation of Atomic Hydrogen and Helium by Low Energy Antiprotons
低能反质子对原子氢和氦的电离
- 批准号:
EP/E016332/1 - 财政年份:2006
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
相似海外基金
Precision spectroscopy of antihydrogen using intense low energy antiproton beam
使用强低能反质子束的反氢精密光谱
- 批准号:
20H01930 - 财政年份:2020
- 资助金额:
$ 251.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating CPT symmetry with Antihydrogen Spectroscopy
用反氢谱研究 CPT 对称性
- 批准号:
19KK0075 - 财政年份:2019
- 资助金额:
$ 251.66万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Hyperfine Spectroscopy of Antihydrogen and Hydrogen
反氢和氢的超精细光谱
- 批准号:
489403-2016 - 财政年份:2018
- 资助金额:
$ 251.66万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hyperfine Spectroscopy of Antihydrogen and Hydrogen
反氢和氢的超精细光谱
- 批准号:
489403-2016 - 财政年份:2017
- 资助金额:
$ 251.66万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
First Spectroscopy of Antihydrogen with Laser-Cooling assisted Antihydrogen Trapping
首次利用激光冷却辅助反氢捕获进行反氢光谱研究
- 批准号:
EP/K017373/1 - 财政年份:2013
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Laser spectroscopy and cooling of antihydrogen for fundamental symmetry tests with ALPHA at CERN
CERN 使用 ALPHA 进行基本对称性测试的激光光谱和反氢冷却
- 批准号:
423333-2012 - 财政年份:2013
- 资助金额:
$ 251.66万 - 项目类别:
Subatomic Physics Envelope - Research Tools and Instruments
Laser System for Enhanced Antihydrogen Trapping and Spectroscopy
用于增强反氢捕获和光谱学的激光系统
- 批准号:
EP/L005522/1 - 财政年份:2013
- 资助金额:
$ 251.66万 - 项目类别:
Research Grant
Laser spectroscopy and cooling of antihydrogen for fundamental symmetry tests with ALPHA at CERN
CERN 使用 ALPHA 进行基本对称性测试的激光光谱和反氢冷却
- 批准号:
423333-2012 - 财政年份:2012
- 资助金额:
$ 251.66万 - 项目类别:
Subatomic Physics Envelope - Research Tools and Instruments
Microwave amplifier for hyperfine spectroscopy of antihydrogen
用于反氢超精细光谱的微波放大器
- 批准号:
406772-2011 - 财政年份:2011
- 资助金额:
$ 251.66万 - 项目类别:
Subatomic Physics Envelope - Research Tools and Instruments
Microwave synthesizer for hyperfine spectroscopy of antihydrogen
用于反氢超精细光谱的微波合成器
- 批准号:
390989-2010 - 财政年份:2010
- 资助金额:
$ 251.66万 - 项目类别:
Subatomic Physics Envelope - Research Tools and Instruments