Trapped Antihydrogen - Towards Spectroscopy
被捕获的反氢 - 走向光谱学
基本信息
- 批准号:EP/D038707/1
- 负责人:
- 金额:$ 100.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Antihydrogen, the bound state of a positron and an antiproton, has recently been created under controlled conditions in the laboratory. The proposal seeks to build upon this by creating and trapping very cold antihydrogen using a magnetic gradient trap. This is an arrangement of magnetic fields that acts upon the small magnetic moment of the antiatom to produce a trapping force. However, such traps are shallow, and are currently only capable of holding neutral species with kinetic energies equivalent to a temperature below 1 Kelvin. To trap antihydrogen efficiently it must be produced at this temperature, or below. This requires several major changes and upgrades to our apparatus. These include a complete new magnet and cryogenic system, an octupole coil arrangement for the neutral trap, a new antihydrogen annihilation detector and upgrades to the performance of the positron accumulator. These changes are very technical in nature and the detailed case for support seeks to explain and justify them. However, all experiments with antihydrogen are difficult, so the question we address here is; why bother? We will explain this using the example of symmetry.It has been apparent for a while that fundamental asymmetries are hidden deep within nature. For example, in the 1950's it was discovered that the weak nuclear interaction violates parity conservation. However, the defective parity mirror can be mostly repaired by adding so-called charge conjugation, which, loosely speaking, means that interactions are unaffected when every particle is substituted by its antiparticle. For a while it was believed that the laws of nature would obey the combination of parity reversal and charge conjugation. But by the mid-1960's this was found to be untrue for a small class of reactions involving unusual, fleeting, particles called K-mesons. Since then it has been assumed that the small blemish in the combined charge conjugation/parity reversal mirror can be corrected by the application of time-reversal.However, this 3-way switch differs from the three discrete symmetries, or any 2-way combination of them because the charge/parity/time combination exists as a theorem that can be proved using the basic postulates of quantum field theory. Such theories are the cornerstone of our current understanding of the Universe, but are widely recognised as being incomplete. So testing this unique 3-way switch is going to the heart of our understanding of nature. Our current picture of the beginning of the Universe involves the Big Bang, which is thought to have been an energetic event that created equal amounts of matter and antimatter. Why then did they not all annihilate one another and leave a Universe devoid of matter? Searches for large amounts of remnant antimatter in the Universe, have failed to find any trace. Currently it is thought that our Universe is matter dominant; in other words asymmetric. The other fact to add to this is that the amount of asymmetry we can currently identify via numerous studies of fleeting and rare particles isn't enough to explain the existence of the material Universe.Thus, the evolution of the Universe is not fully understood and this makes testing the symmetries of nature of great importance. The creation of cold antihydrogen in amounts suitable for study, has opened a new door on symmetry; hopefully one which will allow precision laser spectroscopic comparisons with the spectral lines of hydrogen. Spectroscopy of hydrogen has recently reached fantastic precision for one line in particular, the two-photon 1S-2S transition, which has been determined to about 2 parts in a hundred million million. Amazingly, due to uncertainties in the properties of the proton, this level of precision is way beyond that achieved by theory. Comparisons of hydrogen and antihydrogen would be free of this effect. Our proposal will help make these comparisons a reality.
反氢,一个正电子和一个反质子的结合状态,最近在实验室的受控条件下被创造出来。该提案试图在此基础上,利用磁梯度阱创造并捕获非常冷的反氢。这是一种磁场的排列,作用于反原子的小磁矩,产生捕获力。然而,这种陷阱很浅,目前只能容纳动能相当于温度低于1开尔文的中性物质。为了有效地捕获反氢,它必须在这个温度或更低的温度下产生。这需要对我们的设备进行几项重大更改和升级。其中包括一个全新的磁铁和低温系统,一个中性陷阱的八极线圈安排,一个新的反氢湮灭探测器和升级的正电子蓄能器的性能。这些变化在本质上是非常技术性的,详细的支持案例试图解释和证明它们的合理性。然而,所有的反氢实验都很困难,所以我们在这里要解决的问题是;何苦呢?我们将用对称的例子来解释这一点。很明显,一段时间以来,基本的不对称隐藏在大自然深处。例如,在20世纪50年代,人们发现弱核相互作用违反宇称守恒。然而,有缺陷的宇称镜大多可以通过添加所谓的电荷共轭来修复,粗略地说,这意味着当每个粒子都被它的反粒子取代时,相互作用不会受到影响。有一段时间,人们相信自然定律会服从宇称反转和电荷共轭的结合。但到了20世纪60年代中期,人们发现,对于一小类涉及罕见的、转瞬即逝的粒子k介子的反应来说,这是不正确的。从那时起,人们就假设复合电荷共轭/宇称反转镜中的小缺陷可以通过应用时间反转来纠正。然而,这种三向开关不同于三种离散对称,或者它们的任何双向组合,因为电荷/奇偶性/时间组合作为一个定理存在,可以使用量子场论的基本假设来证明。这些理论是我们目前对宇宙理解的基石,但被广泛认为是不完整的。所以测试这种独特的三向开关是我们对自然理解的核心。我们目前对宇宙起源的理解涉及到大爆炸,大爆炸被认为是一个能量事件,产生了等量的物质和反物质。那么,为什么它们没有彼此湮灭,留下一个没有物质的宇宙呢?对宇宙中大量残余反物质的搜索,未能找到任何痕迹。目前,人们认为我们的宇宙是物质主导的;换句话说就是不对称。另一个需要补充的事实是,我们目前通过大量对稍纵即逝的稀有粒子的研究发现的不对称性,还不足以解释物质宇宙的存在。因此,宇宙的演化并没有被完全理解,这使得测试自然界的对称性变得非常重要。大量适合研究的冷反氢的产生,为对称打开了一扇新的大门;希望它能和氢的光谱线进行精确的激光光谱比较。氢的光谱学最近已经达到了惊人的精度,特别是在一条线上,双光子1S-2S跃迁,它被确定为大约一亿分之一。令人惊讶的是,由于质子性质的不确定性,这种精确度远远超出了理论所能达到的水平。氢和反氢的比较不受这种影响。我们的建议将有助于使这些比较成为现实。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping
用于反氢捕获的潘宁-马尔姆伯格陷阱中磁多极引起的零旋转频率弹跳谐振损耗
- DOI:10.1063/1.3258840
- 发表时间:2009
- 期刊:
- 影响因子:2.2
- 作者:Andresen G
- 通讯作者:Andresen G
Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector
- DOI:10.1063/1.3266967
- 发表时间:2009-12-01
- 期刊:
- 影响因子:1.6
- 作者:Andresen, G. B.;Bertsche, W.;Yamazaki, Y.
- 通讯作者:Yamazaki, Y.
A novel antiproton radial diagnostic based on octupole induced ballistic loss
基于八极诱导弹道损失的新型反质子径向诊断
- DOI:10.1063/1.2899305
- 发表时间:2008
- 期刊:
- 影响因子:2.2
- 作者:Andresen G
- 通讯作者:Andresen G
Progress with cold antihydrogen
冷反氢研究进展
- DOI:10.1016/j.nimb.2006.01.060
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Amoretti M
- 通讯作者:Amoretti M
The ALPHA antihydrogen trapping apparatus
- DOI:10.1016/j.nima.2013.09.043
- 发表时间:2014-01-21
- 期刊:
- 影响因子:1.4
- 作者:Amole, C.;Andresen, G. B.;Yamazaki, Y.
- 通讯作者:Yamazaki, Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mike Charlton其他文献
Exciting antiprotons
令人兴奋的反质子
- DOI:
10.1038/475459a - 发表时间:
2011-07-27 - 期刊:
- 影响因子:48.500
- 作者:
Mike Charlton - 通讯作者:
Mike Charlton
Exciting antiprotons
令人兴奋的反质子
- DOI:
10.1038/475459a - 发表时间:
2011-07-27 - 期刊:
- 影响因子:48.500
- 作者:
Mike Charlton - 通讯作者:
Mike Charlton
On the binding energies of antihydrogen formed by the interactions of antiprotons in cold positron plasmas
冷正电子等离子体中反质子相互作用形成反氢的结合能
- DOI:
10.1088/1361-6455/abcded - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Svante Jonsell;Mike Charlton - 通讯作者:
Mike Charlton
Mike Charlton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mike Charlton', 18)}}的其他基金
Physics with Trapped Antihydrogen
俘获反氢物理学
- 批准号:
EP/L014718/1 - 财政年份:2014
- 资助金额:
$ 100.32万 - 项目类别:
Research Grant
Ionization of Atomic Hydrogen by Low Energy Antiprotons
低能反质子对原子氢的电离
- 批准号:
EP/I005692/1 - 财政年份:2010
- 资助金额:
$ 100.32万 - 项目类别:
Research Grant
Ionization of Atomic Hydrogen by Low Energy Antiprotons
低能反质子对原子氢的电离
- 批准号:
EP/G068968/1 - 财政年份:2009
- 资助金额:
$ 100.32万 - 项目类别:
Research Grant
Ionization of Atomic Hydrogen and Helium by Low Energy Antiprotons
低能反质子对原子氢和氦的电离
- 批准号:
EP/F033885/1 - 财政年份:2007
- 资助金额:
$ 100.32万 - 项目类别:
Research Grant
Ionisation of Atomic Hydrogen and Helium by Low Energy Antiprotons
低能反质子对原子氢和氦的电离
- 批准号:
EP/E016332/1 - 财政年份:2006
- 资助金额:
$ 100.32万 - 项目类别:
Research Grant
相似海外基金
Laser-cooled Berylllium ions for enhanced antihydrogen trapping and magnetometry
激光冷却铍离子用于增强反氢捕获和磁力测定
- 批准号:
2889026 - 财政年份:2023
- 资助金额:
$ 100.32万 - 项目类别:
Studentship
Toward spectroscopic measurements of hydrogen/antihydrogen in an atomic fountain
原子喷泉中氢/反氢的光谱测量
- 批准号:
574811-2022 - 财政年份:2022
- 资助金额:
$ 100.32万 - 项目类别:
University Undergraduate Student Research Awards
Fundamental Symmetry Tests with Trapped Antihydrogen: ALPHA at CERN/AD
捕获反氢的基本对称性测试:CERN/AD 的 ALPHA
- 批准号:
SAPPJ-2020-00022 - 财政年份:2022
- 资助金额:
$ 100.32万 - 项目类别:
Subatomic Physics Envelope - Project
Direct measurement of the Lamb shift in antihydrogen
直接测量反氢的兰姆位移
- 批准号:
574808-2022 - 财政年份:2022
- 资助金额:
$ 100.32万 - 项目类别:
University Undergraduate Student Research Awards
Precision Experiments with Antihydrogen
反氢精密实验
- 批准号:
EP/V00137X/1 - 财政年份:2021
- 资助金额:
$ 100.32万 - 项目类别:
Research Grant
Fundamental tests of antimatter gravitation with antihydrogen accelerators
用反氢加速器进行反物质引力的基础测试
- 批准号:
2587239 - 财政年份:2021
- 资助金额:
$ 100.32万 - 项目类别:
Studentship
Fundamental Symmetry Tests with Trapped Antihydrogen: ALPHA at CERN/AD
捕获反氢的基本对称性测试:CERN/AD 的 ALPHA
- 批准号:
SAPPJ-2020-00022 - 财政年份:2021
- 资助金额:
$ 100.32万 - 项目类别:
Subatomic Physics Envelope - Project
Fundamental Symmetry Tests with Trapped Antihydrogen: ALPHA at CERN/AD
捕获反氢的基本对称性测试:CERN/AD 的 ALPHA
- 批准号:
SAPPJ-2020-00022 - 财政年份:2020
- 资助金额:
$ 100.32万 - 项目类别:
Subatomic Physics Envelope - Project
Determination of the charge radius of antiproton and test of CPT symmetry through the Lamb shift measurement of antihydrogen
通过反氢的兰姆位移测量确定反质子的电荷半径并测试CPT对称性
- 批准号:
20H00150 - 财政年份:2020
- 资助金额:
$ 100.32万 - 项目类别:
Grant-in-Aid for Scientific Research (A)