Laser System for Enhanced Antihydrogen Trapping and Spectroscopy

用于增强反氢捕获和光谱学的激光系统

基本信息

  • 批准号:
    EP/L005522/1
  • 负责人:
  • 金额:
    $ 1.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Antimatter lies at the heart of one of the most profound mysteries in our current understanding of the universe. Since the discovery of quantum mechanics, the description of the very small, and Einstein's general relativity theory, the description of the very large, the two have been at odds with each other. Quantum mechanics predicts the existence of a mirror image of matter, the so-called antimatter, which was soon confirmed. However, quantum mechanics also predict that the universe should be symmetric with respect to matter and antimatter or in other words that half the universe should be made of antimatter. Until now we have found no evidence of bulk antimatter in the universe a fact that remains a mystery in science. This is where Einstein may perhaps enter the stage. Einstein's theory describes the development of the very large (stars, galaxies, the universe) very well, but it is not compatible with the quantum world. A description of our world capable of encompassing both the very large and the very small has thus far eluded science. Such a description will have to include an explanation for the apparent lack of antimatter in the universe.The recent start up of the LHC forms part of the effort to address this fundamental problem in our understanding of the world around us. This fellowship forms part of another, low energy, approach to the same issue. We are working towards detailed studies of the structure of neutral atoms made of antimatter. According to quantum mechanics their structure should be exactly the same as their matter counterparts. To accomplish this goal we are trapping Antihydrogen and plan to compare it to Hydrogen. As quantum mechanics predicts that these atoms should have identical internal structure to any level of precision, any difference we may discover will deliver ground-breaking information for our understanding of the universe. The making and trapping of these anti-atoms is a delicate affair, and the work here builds on many years of experience in the production of Antihydrogen and the recent successful trapping of the same. The motivation for making atoms is that these are neutral and can be probed by one of the best precision tools available to science - lasers. Precise measurements on atomic systems have been perfected over the last century and the advent of lasers accelerated the field far beyond other fields of precision measurement, such that today, we can measure transitions in atoms with up to 17 decimal places of precision. We plan to apply the techniques with this unfathomable precision to study our trapped Antihydrogen atoms.However, this lofty goal requires very precise control over the formation of the Antihydrogen. The Antihydrogen must be trapped to allow for precise measurements of its internal structure. As Antihydrogen is neutral, it cannot be easily trapped. However, we can trap Antihydrogen in a magnetic trap. This is possible as Antihydrogen, though neutral, has a structure, which causes it to have a small magnetic moment, or in other words behave as a very small magnet. The tricky bit to trapping the Antihydrogen is that this dipole moment is so small, that even with state-of-the-art magnetic fields, our trap can only hold atoms so slow that their energy corresponds to a temperature less than half a degree above absolute zero. We are therefore currently only able to trap about one atom at a time. This project aims to facilitate the production of very cold Antihydrogen by using Beryllium ions, which can be cooled using a technique called laser-cooling. These ions can be cooled to a few thousandth of a degree above absolute zero, and can thus be used as a heat sink for the particles used to form Antihydrogen. This effort will significantly increase the number of trapped atoms and allow us to study the differences between Antihydrogen and Hydrogen in great detail. If any difference is found it will have a profound impact on physics as we know it.
反物质是我们目前对宇宙的理解中最深奥的谜团之一的核心。自从量子力学发现以来,描述的是非常小的,而爱因斯坦的广义相对论描述的是非常大的,两者一直相互矛盾。量子力学预言存在物质的镜像,即所谓的反物质,这一点很快得到了证实。然而,量子力学也预测宇宙应该是关于物质和反物质对称的,或者换句话说,宇宙的一半应该是由反物质组成的。到目前为止,我们还没有发现宇宙中存在大量反物质的证据,这在科学上仍然是一个谜。这就是爱因斯坦可能进入舞台的地方。爱因斯坦的理论很好地描述了非常大(恒星,星系,宇宙)的发展,但它与量子世界不兼容。迄今为止,科学还无法对我们的世界进行既能涵盖非常大又能涵盖非常小的描述。这样的描述必须包括对宇宙中明显缺乏反物质的解释。最近启动的大型强子对撞机是解决我们理解周围世界中这个基本问题的努力的一部分。这个奖学金是解决同一问题的另一个低能量方法的一部分。我们正致力于详细研究由反物质构成的中性原子的结构。根据量子力学,它们的结构应该与它们的物质对应物完全相同。为了实现这个目标,我们正在捕获反氢,并计划将其与氢进行比较。由于量子力学预测,这些原子应该具有相同的内部结构,无论精度如何,我们可能发现的任何差异都将为我们理解宇宙提供突破性的信息。这些反原子的制造和捕获是一件微妙的事情,这里的工作建立在多年生产反氢的经验和最近成功捕获的基础上。制造原子的动机是它们是中性的,可以用科学上最精确的工具之一--激光来探测。原子系统的精确测量在上个世纪已经完善,激光的出现加速了该领域的发展,远远超出了其他精确测量领域,以至于今天,我们可以测量原子中的跃迁,精度高达小数点后17位。我们计划以这种深不可测的精确度来应用这些技术来研究我们被困的反氢原子。然而,这个崇高的目标需要非常精确地控制反氢的形成。反氢必须被捕获,以便精确测量其内部结构。由于反氢是中性的,它不容易被捕获。然而,我们可以将反氢原子捕获在磁阱中。这是可能的,因为反氢虽然是中性的,但它的结构使它具有很小的磁矩,或者换句话说,它的行为就像一个非常小的磁铁。捕获反氢的棘手之处在于,这个偶极矩是如此之小,即使有最先进的磁场,我们的陷阱也只能保持原子如此之慢,以至于它们的能量对应于绝对零度以上不到半度的温度。因此,我们目前一次只能捕获大约一个原子。该项目旨在通过使用铍离子来促进非常冷的反氢的生产,铍离子可以使用称为激光冷却的技术进行冷却。这些离子可以被冷却到绝对零度以上的千分之几度,因此可以作为用于形成反氢的粒子的散热器。这一努力将大大增加被困原子的数量,并使我们能够非常详细地研究反氢和氢之间的差异。如果发现任何差异,它将对我们所知的物理学产生深远的影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antihydrogen accumulation for fundamental symmetry tests.
  • DOI:
    10.1038/s41467-017-00760-9
  • 发表时间:
    2017-09-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Ahmadi M;Alves BXR;Baker CJ;Bertsche W;Butler E;Capra A;Carruth C;Cesar CL;Charlton M;Cohen S;Collister R;Eriksson S;Evans A;Evetts N;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Ishida A;Johnson MA;Jones SA;Jonsell S;Kurchaninov L;Madsen N;Mathers M;Maxwell D;McKenna JTK;Menary S;Michan JM;Momose T;Munich JJ;Nolan P;Olchanski K;Olin A;Pusa P;Rasmussen CØ;Robicheaux F;Sacramento RL;Sameed M;Sarid E;Silveira DM;Stracka S;Stutter G;So C;Tharp TD;Thompson JE;Thompson RI;van der Werf DP;Wurtele JS
  • 通讯作者:
    Wurtele JS
An experimental limit on the charge of antihydrogen.
  • DOI:
    10.1038/ncomms4955
  • 发表时间:
    2014-06-03
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Amole C;Ashkezari MD;Baquero-Ruiz M;Bertsche W;Butler E;Capra A;Cesar CL;Charlton M;Eriksson S;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Jonsell S;Kurchaninov L;Little A;Madsen N;McKenna JT;Menary S;Napoli SC;Nolan P;Olchanski K;Olin A;Povilus A;Pusa P;Rasmussen CØ;Robicheaux F;Sarid E;Silveira DM;So C;Tharp TD;Thompson RI;van der Werf DP;Vendeiro Z;Wurtele JS;Zhmoginov AI;Charman AE
  • 通讯作者:
    Charman AE
Antiproton cloud compression in the ALPHA apparatus at CERN
CERN ALPHA 装置中的反质子云压缩
  • DOI:
    10.1007/s10751-015-1202-4
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gutierrez A
  • 通讯作者:
    Gutierrez A
In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap
  • DOI:
    10.1088/1367-2630/16/1/013037
  • 发表时间:
    2014-01-21
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Amole, C.;Ashkezari, M. D.;Wurtele, J. S.
  • 通讯作者:
    Wurtele, J. S.
The ALPHA antihydrogen trapping apparatus
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Niels Madsen其他文献

Distribution of brook lamprey (Lampetra planeri) ammocoetes in the sediment of a brook
  • DOI:
    10.1007/s10641-025-01712-9
  • 发表时间:
    2025-06-09
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Mathias Melchior;Niels Madsen
  • 通讯作者:
    Niels Madsen
Short-term discard survival and catch-related trauma in European plaice (emPleuronectes platessa/em) caught in the Baltic Sea by Danish seine during summer
夏季丹麦围网在波罗的海捕捞的欧洲比目鱼(Pleuronectes platessa)的短期丢弃存活率和与捕捞相关的创伤
  • DOI:
    10.1016/j.fishres.2024.107204
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Rasmus Ern;Andreas Faber;Niels Madsen
  • 通讯作者:
    Niels Madsen
Improving the effectiveness of escape windows in directed Norway lobster Nephrops norvegicus trawl fisheries
  • DOI:
    10.1007/s12562-012-0525-1
  • 发表时间:
    2012-06-30
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Niels Madsen;René Holst;Rikke Petri Frandsen;Ludvig A. Krag
  • 通讯作者:
    Ludvig A. Krag
Selectivity of fishing gears used in the Baltic Sea cod fishery
Improving selectivity of the Baltic cod pelagic trawl fishery: Experiments to assess the next step
  • DOI:
    10.1016/j.fishres.2010.01.011
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Niels Madsen;Vesa Tschernij;Renè Holst
  • 通讯作者:
    Renè Holst

Niels Madsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Niels Madsen', 18)}}的其他基金

Precision Experiments with Antihydrogen
反氢精密实验
  • 批准号:
    EP/V00137X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Research Grant
Antiparticle beamline for experiments on matter antimatter symmetry
用于物质反物质对称性实验的反粒子束线
  • 批准号:
    EP/R025320/1
  • 财政年份:
    2018
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Research Grant
Towards Precision Experiments with Antihydrogen
迈向反氢精密实验
  • 批准号:
    EP/P024734/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Research Grant
First Spectroscopy of Antihydrogen with Laser-Cooling assisted Antihydrogen Trapping
首次利用激光冷却辅助反氢捕获进行反氢光谱研究
  • 批准号:
    EP/K017373/1
  • 财政年份:
    2013
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Research Grant
Antihydrogen trapping and plasma control - RESUBMISSION 8/5/07
反氢捕获和等离子体控制 - 重新提交 8/5/07
  • 批准号:
    EP/F019785/1
  • 财政年份:
    2007
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Research Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
TBX1/LKB1轴阻断system Xc活性调控AML细胞铁死亡的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
TET2通过调控BAP1-System Xc-轴促进紫拉非尼诱导的肝细胞癌铁死亡的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
  • 批准号:
    82372704
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于PNO1介导system Xc-/GSH途径调控肠上皮细胞自噬依赖性铁死亡探讨加味胶七散治疗溃疡性结肠炎的机制
  • 批准号:
    82304982
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单细胞测序探讨淫羊藿苷对Erastin诱导髓核细胞铁死亡相关system-Xc/GSH/GPX4分子轴线的调控作用
  • 批准号:
    82360947
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
miR-198 靶向 Nrf2 抑制 System Xc-通路调控滋养细胞铁死亡在子痫前期中的机制
  • 批准号:
    2022JJ70123
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
BAP1介导H2B去泛素化抑制System Xc-在蛛网膜下腔出血神经元铁死亡中的作用和机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 1.32万
  • 项目类别:
    EU-Funded
Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models (AI4PEX)
人工智能和机器学习增强地球系统模型中过程和极值的表示(AI4PEX)
  • 批准号:
    10093450
  • 财政年份:
    2024
  • 资助金额:
    $ 1.32万
  • 项目类别:
    EU-Funded
SBIR Phase II: An AI-Enhanced Angiographic System to Guide Endovascular Treatment of Intracranial Aneurysms
SBIR II 期:人工智能增强血管造影系统指导颅内动脉瘤的血管内治疗
  • 批准号:
    2304388
  • 财政年份:
    2023
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Cooperative Agreement
RAPID: Evaluation of an Artificial Intelligence-enhanced Edge Sensor System for Multi-Hazard Monitoring and Detection
RAPID:评估用于多危险监测和检测的人工智能增强型边缘传感器系统
  • 批准号:
    2346568
  • 财政年份:
    2023
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a Deep Reactive Ion Etching System for Enhanced Semiconductor Processing Capability
MRI:轨道 1 采购深度反应离子蚀刻系统以增强半导体加工能力
  • 批准号:
    2320476
  • 财政年份:
    2023
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Standard Grant
Enhanced resolution in vivo time-lapse imaging system for subcellular CLEM
用于亚细胞 CLEM 的增强分辨率体内延时成像系统
  • 批准号:
    518284373
  • 财政年份:
    2023
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Major Research Instrumentation
SBIR Phase I: Low-Cost, Vision-Enhanced, High-Efficiency Heat Cable Control System
SBIR 第一阶段:低成本、视觉增强、高效热电缆控制系统
  • 批准号:
    2224907
  • 财政年份:
    2023
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Standard Grant
High Accuracy Vision System with Enhanced AI algorithm for IVF ICSI Process
具有增强型 AI 算法的高精度视觉系统,适用于 IVF ICSI 流程
  • 批准号:
    10079725
  • 财政年份:
    2023
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Collaborative R&D
Improving flexibility and performance of the Acute Care Enhanced Surveillance (ACES) System for public health surveillance: an ensemble of state-of-the-art machine learning and rule-based natural language processing methods
提高用于公共卫生监测的急性护理增强监测 (ACES) 系统的灵活性和性能:最先进的机器学习和基于规则的自然语言处理方法的集合
  • 批准号:
    468864
  • 财政年份:
    2022
  • 资助金额:
    $ 1.32万
  • 项目类别:
    Operating Grants
MEDiate: Multi-hazard and risk informed system for Enhanced local and regional Disaster risk management
MEDiate:加强地方和区域灾害风险管理的多灾种和风险告知系统
  • 批准号:
    10049469
  • 财政年份:
    2022
  • 资助金额:
    $ 1.32万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了