Dial-a-Molecule. 100% efficient synthesis.

拨号分子。%20100%%20效率%20合成。

基本信息

  • 批准号:
    EP/H034447/1
  • 负责人:
  • 金额:
    $ 19.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Molecules are collections of atoms connected together in a specific way. Even constrained to those elements most used (C, N, H, O, P, S) the number of possible molecules, even using small numbers of atoms, is vast, and every molecule has different properties. It is unsurprising then that much of modern life (and life itself) is based on molecules with specific structures and properties (e.g. as pharmaceuticals, agrochemicals, plastics, liquid crystals). The task of making molecules is challenging - an organic molecule containing just a few dozen atoms can easily take many man-years of effort to complete. The result is that many of the molecules we use are compromises - the easiest to make that have acceptable function, rather than being the best for the job. One example of this is in pharmaceuticals when the need to use simple, easy to make compounds leads to cross-activity (interaction with other than the target biological system) as the compromise, and hence undesirable side effects.The aim of the 'Dial-a-Molecule. 100% efficient synthesis' Grand Challenge (GC) network is to make the synthesis of any desired molecule as easy as dialling a number thus removing a severe constraint to progress in many fields. A linked aim is to make synthesis 100% efficient. Currently in the production of a molecule many times the mass of the desired product (typically 1000's of times) is produced as waste with consequent disposal and cost implications. With 100% efficient synthesis there would be no waste to dispose of and the process would be much cheaper and consume less energy. This proposal is to establish a network covering a wide variety of disciplines to both identify how to tackle the Dial-a-Molecule GC by producing a 'Roadmap', and to establish groups of people to work on solving the problems identified. It also aims to promote the GC to secure funding for the work, and maximise commercial benefit from tackling the GC.The network will fund and support the formation of groups of scientists to work on 4 themes ( Synthetic route selection , Lab of the future , A step change in molecular synthesis and Catalytic paradigms for 100% efficient synthesis ) which have been identified as being the keys to the GC. The network will also fund a series of 'sandpits' in which experts from disparate disciplines pool their knowledge and imagination in an intensive meeting to produce potentially transformative ideas aimed at the Grand Challenge.The types of questions to be answered to tackle Dial-a-Molecule include:How can we reliably predict how to convert one molecule into another?How can we carry out a series of reactions sequentially?Can we invent modular reactions and/or reactors which can be linked in a myriad of ways to provide synthesis of a complexity to match the challenge of Dial-a-Molecule .It will take contributions from computing, mathematics, engineering (chemical, electrical/electronic, control, systems, microsystems), analytical and physical chemistry and other disciplines, as well as dramatic advances in synthesis to tackle the Grand Challenge. Although Dial-a-Molecule is expect to take 20-40 years to achieve, we expect there to be substantial advances, and consequent commercial benefits, in the initial stages.
分子是以特定方式连接在一起的原子的集合。即使局限于那些最常用的元素(C,N,H,O,P,S),可能的分子的数量,即使使用少量的原子,也是巨大的,并且每个分子都有不同的性质。因此,现代生活(以及生活本身)的很大一部分是基于具有特定结构和性质的分子(例如,药品、农用化学品、塑料、液晶)就不足为奇了。制造分子的任务是具有挑战性的--一个只有几十个原子的有机分子很容易就需要花费很多人的努力才能完成。结果是,我们使用的许多分子都是折衷分子--最容易制造的具有可接受功能的分子,而不是对工作最好的分子。其中一个例子是在制药中,当需要使用简单、容易制造的化合物时,会导致交叉活性(与目标生物系统以外的相互作用)作为折衷,从而产生不良的副作用。‘拨号分子.100%高效合成’大挑战(GC)网络的目标是使任何所需分子的合成像拨打数字一样容易,从而消除在许多领域取得进展的严重制约。一个相关的目标是使合成100%有效。目前,在一个分子的生产中,质量是所需产品质量的许多倍(通常是S的1000倍)会产生废物,随之而来的是处置和成本影响。有了100%高效的合成,就不会有废物需要处理,而且这个过程将会更便宜,消耗更少的能源。这项建议是建立一个涵盖多个学科的网络,以确定如何通过制定一份‘路线图’来解决拨号分子GC问题,并建立一个小组来努力解决所确定的问题。该网络将资助和支持组成科学家小组,就4个主题(合成路线选择、未来的实验室、分子合成的阶段性变化和100%高效合成的催化范例)开展工作,这些主题已被确定为GC的关键。该网络还将资助一系列“沙坑”,来自不同学科的专家在密集的会议中汇集他们的知识和想象力,以产生针对重大挑战的潜在变革性想法。要解决Dial-a分子问题,需要回答的问题类型包括:我们如何可靠地预测如何将一个分子转化为另一个分子?我们如何按顺序进行一系列反应?我们能否发明模块反应和/或反应器,它们可以以各种方式连接在一起,提供复杂的合成,以匹配Dial-a分子的挑战。它将从计算、数学、工程(化学、电气/电子、控制、在系统、微系统)、分析和物理化学以及其他学科,以及在应对重大挑战的合成方面取得了巨大进展。尽管Dial-a分子预计需要20-40年的时间才能实现,但我们预计在最初阶段将有实质性的进展和随之而来的商业利益。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic lab notebooks: can they replace paper?
  • DOI:
    10.1186/s13321-017-0221-3
  • 发表时间:
    2017-05-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Kanza S;Willoughby C;Gibbins N;Whitby R;Frey JG;Erjavec J;Zupančič K;Hren M;Kovač K
  • 通讯作者:
    Kovač K
ChemTrove: enabling a generic ELN to support chemistry through the use of transferable plug-ins and online data sources.
ChemTrove:通过使用可转移插件和在线数据源,使通用 ELN 能够支持化学。
First steps towards semantic descriptions of electronic laboratory notebook records.
  • DOI:
    10.1186/1758-2946-5-52
  • 发表时间:
    2013-12-20
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Coles SJ;Frey JG;Bird CL;Whitby RJ;Day AE
  • 通讯作者:
    Day AE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Whitby其他文献

Richard Whitby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Whitby', 18)}}的其他基金

Dial-a-Molecule Grand Challenge Network, Phase III
拨号分子大挑战网络,第三阶段
  • 批准号:
    EP/P007589/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Closed loop optimisation for sustainable chemical manufacture
可持续化学品制造的闭环优化
  • 批准号:
    EP/L003309/1
  • 财政年份:
    2013
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Dial-a-Molecule Grand Challenge Network continuation
拨号分子大挑战网络延续
  • 批准号:
    EP/K004840/1
  • 财政年份:
    2012
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Reagent-Free Flow Chemistry: The Generation and Trapping of Reactive Intermediates
无试剂流动化学:反应中间体的生成和捕获
  • 批准号:
    EP/G027986/1
  • 财政年份:
    2009
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant

相似海外基金

Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
  • 批准号:
    MR/Z503757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
  • 批准号:
    LE240100086
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
  • 批准号:
    ES/Y010655/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
  • 批准号:
    24K18359
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
  • 批准号:
    BB/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
  • 批准号:
    23K20858
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
  • 批准号:
    BB/Y00549X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
  • 批准号:
    2339595
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了