Dial-a-Molecule Grand Challenge Network, Phase III
拨号分子大挑战网络,第三阶段
基本信息
- 批准号:EP/P007589/1
- 负责人:
- 金额:$ 32.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Designed molecules are the basis of much of modern life, for example as pharmaceuticals, agrochemicals, plastics, liquid crystals, electronic materials etc). The task of discovering new molecules with desired properties is constrained by the time it takes to make them leading to compromises. For example in pharmaceuticals when the need to use simple, easy to make compounds leads to cross-activity (interaction with other than the target biological system) as the compromise, and hence undesirable side effects. The aim of 'Dial-a-Molecule' is to make the synthesis of any desired molecule as quick as ordering an existing chemical from your supplier. A linked aim is to make production of chemicals more efficient with lower energy usage and less waste. The Dial-a-Molecule Network was established as one of three 'Grand Challenges' for Physical Sciences by EPSRC in 2010 with the aim that "In 20-40 years, scientists will be able to deliver any desired molecule within a timeframe useful to the end-user, using safe, economically viable and sustainable processes." In its first phase it produced a roadmap (www.dial-a-molecule.com) to describe the advances needed to achieve the Grand Challenge. Strong collaborations with and input from other disciplines, such as mathematics, engineering, computer science, data science, and biology, is an essential component to realizing the aims of Dial-a-Molecule and in the second phase it progressed in building the multi-disciplinary community needed to tackle the challenge. It also started to promote a fundamental change in the way that synthetic chemistry is undertaken towards becoming a more data-centric discipline, embracing the data revolution and advances in computing power and technology that has occurred over the last 10 years. The current grant application seeks funding to extend the network for a 3 year period, with clear plans to be self-sustaining in some form at the end. Although the overall objectives remain unchanged, plans for Phase III of the network will focus on delivering impact in in six key themes covering changing way synthesis is carried out with a particular emphasis on data capture and use, developing new ways of carrying out and studying reactions with an emphasis on automation, inventing new reactions with a potentially transformative effect on the challenge, and establishing a UK infrastructure and profile in the area. The network will continue to promote inter-disciplinary mobility, and will put a strong emphasis on supporting Early Career Researchers. The network has been particularly successful in industrial engagement; this will be further developed through initiatives such as the Synthesis College and SME networks.The network will organize a large number of open meetings aimed at bringing together different disciplines to discuss specific topics, identify opportunities, and establish new collaborations to seek funding. It will also directly facilitate applications for funding in the area by supporting meetings to refine ideas and consortia, supporting visits between partners, and funding small proof of concept projects. It will provide training in important areas, and facilitate the introduction of new techniques (software and automation) to help equip the next generation of researchers with necessary skills. The Network has the funding of three 'headline' projects as specific aims in phase III - a 'Dial-a-Molecule' Grand Challenge Institute to provide a national focus and critical mass of people and equipment; a national collection of catalysts and ligands; and a demonstration 'Dial-a-molecule' machine.
设计的分子是现代生活的基础,例如药物、农用化学品、塑料、液晶、电子材料等。发现具有所需特性的新分子的任务受到制造它们所需的时间的限制,从而导致妥协。例如,在制药中,当需要使用简单、易于制造的化合物时,会导致交叉活性(与目标生物系统以外的相互作用)作为妥协,从而产生不良副作用。 “Dial-a-Molecule”的目标是使任何所需分子的合成像从供应商处订购现有化学品一样快。一个相关的目标是提高化学品的生产效率,降低能源消耗和减少浪费。拨号分子网络是 EPSRC 于 2010 年建立的物理科学三大“重大挑战”之一,其目标是“在 20-40 年内,科学家将能够使用安全、经济可行和可持续的流程,在对最终用户有用的时间范围内提供任何所需的分子。”在第一阶段,它制定了路线图(www.dial-a-molecule.com)来描述实现“大挑战”所需的进步。与数学、工程学、计算机科学、数据科学和生物学等其他学科的强有力合作和投入,是实现“拨号分子”目标的重要组成部分,在第二阶段,它在建立应对挑战所需的多学科社区方面取得了进展。它还开始推动合成化学的方式发生根本性变化,使其成为一门更加以数据为中心的学科,拥抱过去 10 年发生的数据革命以及计算能力和技术的进步。目前的拨款申请寻求资金将网络延长三年,并明确计划最终以某种形式实现自我维持。尽管总体目标保持不变,但该网络第三阶段的计划将侧重于在六个关键主题上产生影响,包括改变合成的进行方式,特别强调数据捕获和使用,开发执行和研究反应的新方法,重点是自动化,发明对挑战具有潜在变革性影响的新反应,以及在该领域建立英国基础设施和形象。该网络将继续促进跨学科流动,并将重点支持早期职业研究人员。该网络在工业参与方面尤其成功;这将通过综合学院和中小企业网络等举措得到进一步发展。该网络将组织大量公开会议,旨在将不同学科聚集在一起讨论特定主题,寻找机会并建立新的合作以寻求资金。它还将通过支持完善想法和联盟的会议、支持合作伙伴之间的访问以及资助小型概念验证项目,直接促进该领域的资金申请。它将提供重要领域的培训,并促进新技术(软件和自动化)的引入,帮助下一代研究人员掌握必要的技能。该网络资助了三个“头条”项目,作为第三阶段的具体目标:“拨动分子”大挑战研究所,以提供国家重点和关键数量的人员和设备;全国催化剂和配体收藏;以及一台演示“拨号分子”机器。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Author Correction: Improving reaction prediction.
作者更正:改进反应预测。
- DOI:10.1038/s41557-020-0545-x
- 发表时间:2021
- 期刊:
- 影响因子:21.8
- 作者:Gale EM
- 通讯作者:Gale EM
High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge.
- DOI:10.1021/jacs.1c02891
- 发表时间:2021-05-19
- 期刊:
- 影响因子:15
- 作者:Jones CD;Kershaw Cook LJ;Marquez-Gamez D;Luzyanin KV;Steed JW;Slater AG
- 通讯作者:Slater AG
Kinetic Treatments for Catalyst Activation and Deactivation Processes based on Variable Time Normalization Analysis
基于变时间归一化分析的催化剂活化和失活过程的动力学处理
- DOI:10.1002/ange.201903878
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Martínez-Carrión A
- 通讯作者:Martínez-Carrión A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Whitby其他文献
Richard Whitby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Whitby', 18)}}的其他基金
Closed loop optimisation for sustainable chemical manufacture
可持续化学品制造的闭环优化
- 批准号:
EP/L003309/1 - 财政年份:2013
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Dial-a-Molecule Grand Challenge Network continuation
拨号分子大挑战网络延续
- 批准号:
EP/K004840/1 - 财政年份:2012
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Dial-a-Molecule. 100% efficient synthesis.
拨号分子。%20100%%20效率%20合成。
- 批准号:
EP/H034447/1 - 财政年份:2010
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Reagent-Free Flow Chemistry: The Generation and Trapping of Reactive Intermediates
无试剂流动化学:反应中间体的生成和捕获
- 批准号:
EP/G027986/1 - 财政年份:2009
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
相似国自然基金
D-A类共轭聚合物晶界内部tie molecule构象调控
- 批准号:51573185
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
耦合可积系统及其molecule解的研究
- 批准号:11026119
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
- 批准号:
24K18359 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
- 批准号:
BB/Y001567/1 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
- 批准号:
LE240100086 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant
FLP Zintl Clusters for Small Molecule Activation and Catalysis
用于小分子活化和催化的 FLP Zintl 簇
- 批准号:
EP/V012061/2 - 财政年份:2024
- 资助金额:
$ 32.37万 - 项目类别:
Research Grant














{{item.name}}会员




