ULTRA-SENSITIVE GRAPHENE NANO-BIOSENSORS
超灵敏石墨烯纳米生物传感器
基本信息
- 批准号:EP/I00193X/1
- 负责人:
- 金额:$ 12.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Illnesses like cancer, cardiovascular diseases, Alzheimer's, Parkinson's, and diabetes have negative effects on patients, society and insurance systems. The ever-ageing population has a critical demand for more efficient, affordable healthcare.Nanotechnology is building nanometre sized devices for electronics and medical applications, raising expectations for better diagnostics and 'smart' treatments. Nanosensors could identify disease biomarkers at the earliest possible stage, potentially intercepting more serious illness. Available therapeutic options informed by early detection are greatly enhanced e.g. prostate cancer, the 2nd largest killer of male cancer patients, better than 70% chance of successful treatment if detected early. Biomarkers are often present at very low concentrations. Monitoring of biomarkers like prostate-specific-antigen, glucose or other blood-based markers at clinical concentrations - possible using nano-sensor arrays - could provide genuine benefits to patients. Non-invasive smart-testing using urine or breath samples would have a hugely beneficial impact on chronic patients and for monitoring biomarker levels after treatment. Current diagnosis of disease biomarkers is based on detection of fluorescently labeled probe molecules which interact with specific substrate-bound receptors. This is expensive and time-consuming, with limited sensitivity. Nanoscale electrochemical biosensors can achieve much higher sensitivities, using label-free biomarkers. We will exploit our recent advances in graphene growth and semiconductor surface functionalisation, to develop wafer-based, graphene/Silicon Carbide (SiC) technology for novel biosensor applications. Graphene, a single atomic layer of graphite, has some exceptional electronic properties such as its zero bandgap and very high carrier mobilities at room temperature - similar to carbon nanotubes. Graphene can be grown on SiC substrates using silicon sublimation. The principal advantage of graphene/SiC over conventional graphene - from exfoliation of graphene flakes from graphite substrates - is the capacity for graphene growth on flat, large-area wafers (up to 100mm in diameter), on which devices can subsequently be fabricated using standard semiconductor processing. Nano-channel graphene electronic devices will be fabricated on SiC substrates. We have shown that graphene can be bio-functionalized and will use surface functionalisation chemistry to attach bio-receptors to nano-channel graphene devices. Because of their high surface/volume ratio and quantum confinement properties, the electrical properties of graphene nano-channels have increased signal/noise ratios and are strongly influenced by minor perturbations, enabling biomarker detection at ultra-sensitive (fM) analyte levels. Current transport through the nanosensor should show extreme sensitivity to its local environment.A proof-of-concept nano-channel bio-sensor will be developed using antibody-functionalized graphene, capable of specific and selective interaction with the target prostate cancer biomarker, 8-hydroxydeoxyguanosine (8-OHdG). When the bio-molecule binds to the functionalised surface, it produces an electrical signal, which can be detected. The key to an effective biosensor is that only specific bio-molecules will bind to the receptor and produce a response. Selectivity can be controlled by choosing the correct bio-receptor.The functionalisation chemistry proposed allows for attachment of a variety of antibody, enzyme, or aminoacid bio-receptors. Our graphene/SiC biochip could eventually provide an ultra-sensitive, fast-diagnosis, cost-effective test for numerous disease biomarkers - potentially revolutionizing healthcare by bringing diagnosis and monitoring to the point-of-care. Once trialed, mobile monitoring systems, transmitting a signal to a hand held readout display, could allow translation of healthcare from hospitals to patients in their own homes.
癌症、心血管疾病、阿尔茨海默氏症、帕金森氏症和糖尿病等疾病对患者、社会和保险系统都有负面影响。日益老龄化的人口对更有效、更实惠的医疗保健有着迫切的需求。纳米技术正在为电子和医疗应用构建纳米尺寸的设备,提高了人们对更好的诊断和“智能”治疗的期望。纳米传感器可以在尽可能早的阶段识别疾病生物标志物,有可能拦截更严重的疾病。通过早期检测提供的可用治疗选择大大增强,例如前列腺癌,男性癌症患者的第二大杀手,如果早期检测,成功治疗的机会超过70%。生物标志物通常以非常低的浓度存在。在临床浓度下监测前列腺特异性抗原、葡萄糖或其他血液标志物等生物标志物--可能使用纳米传感器阵列--可以为患者提供真正的益处。使用尿液或呼吸样本的非侵入性智能检测将对慢性病患者和治疗后监测生物标志物水平产生巨大的有益影响。目前疾病生物标志物的诊断是基于检测与特异性底物结合受体相互作用的荧光标记探针分子。这是昂贵和耗时的,具有有限的灵敏度。纳米级电化学生物传感器可以实现更高的灵敏度,使用无标记的生物标志物。我们将利用我们在石墨烯生长和半导体表面功能化方面的最新进展,开发基于晶片的石墨烯/碳化硅(SiC)技术,用于新型生物传感器应用。石墨烯是一种单原子层的石墨,具有一些特殊的电子特性,例如它的零带隙和室温下非常高的载流子迁移率-类似于碳纳米管。石墨烯可以使用硅升华在SiC衬底上生长。石墨烯/SiC相对于传统石墨烯的主要优势-从石墨衬底剥离石墨烯薄片-是石墨烯在平坦的大面积晶片(直径高达100 mm)上生长的能力,随后可以使用标准半导体工艺在其上制造器件。纳米通道石墨烯电子器件将在SiC衬底上制造。我们已经表明,石墨烯可以生物功能化,并将使用表面功能化化学将生物受体连接到纳米通道石墨烯设备。由于其高的表面/体积比和量子限制特性,石墨烯纳米通道的电特性具有增加的信号/噪声比,并且受到微小扰动的强烈影响,使得能够在超灵敏(fM)分析物水平下进行生物标志物检测。通过纳米传感器的电流传输应显示出其局部环境的极端灵敏度。将开发一种概念验证的纳米通道生物传感器,使用抗体功能化的石墨烯,能够特异性和选择性地与目标前列腺癌生物标志物8-羟基脱氧鸟苷(8-OHdG)相互作用。当生物分子与功能化表面结合时,它会产生一个可以被检测到的电信号。有效的生物传感器的关键是只有特定的生物分子才能与受体结合并产生反应。选择性可以通过选择正确的生物受体来控制。所提出的功能化化学允许连接各种抗体、酶或氨基酸生物受体。我们的石墨烯/SiC生物芯片最终可以为许多疾病生物标志物提供超灵敏,快速诊断,具有成本效益的测试-通过将诊断和监测带到护理点,可能会彻底改变医疗保健。一旦试用,移动的监测系统,传输信号到手持读出显示器,可以允许翻译的医疗保健从医院到病人在自己的家里。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Electric-Field Responsive Microsystem for Controllable Miniaturised Drug Delivery Applications
用于可控小型药物输送应用的电场响应微系统
- DOI:10.1016/j.proeng.2011.12.242
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Liu Y
- 通讯作者:Liu Y
Enhanced water oxidation catalytic performance of graphene oxide by gamma ray irradiation post-treatment
- DOI:10.1016/j.matlet.2019.01.035
- 发表时间:2019
- 期刊:
- 影响因子:3
- 作者:A. Devadoss;S. Ramasundaram;K. Asokan;Byungki Kim;S. Pitchaimuthu
- 通讯作者:A. Devadoss;S. Ramasundaram;K. Asokan;Byungki Kim;S. Pitchaimuthu
Ethics, Nanobiosensors and Elite Sport: The Need for a New Governance Framework.
- DOI:10.1007/s11948-016-9855-1
- 发表时间:2017-12
- 期刊:
- 影响因子:3.7
- 作者:Evans R;McNamee M;Guy O
- 通讯作者:Guy O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Owen Guy其他文献
Owen Guy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Owen Guy', 18)}}的其他基金
Manufacture of silicon microneedles for drug & vaccine delivery
药物用硅微针的制造
- 批准号:
EP/L020734/1 - 财政年份:2014
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
相似海外基金
Graphene/Polymer-based Fluorescent Nanozymes for Sensitive Detection of Metabolic Biotargets
用于代谢生物靶标灵敏检测的石墨烯/聚合物荧光纳米酶
- 批准号:
2304873 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
- 批准号:
561065-2020 - 财政年份:2021
- 资助金额:
$ 12.89万 - 项目类别:
Alliance Grants
Ultra-sensitive mass detection of ppt-level gas molecules with graphene nanomechanical resonators
利用石墨烯纳米机械谐振器对ppt级气体分子进行超灵敏质量检测
- 批准号:
20F20060 - 财政年份:2020
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Graphene/diamond heterojunction formation for high sensitive quantum measurement
用于高灵敏度量子测量的石墨烯/金刚石异质结形成
- 批准号:
20K21136 - 财政年份:2020
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
- 批准号:
561065-2020 - 财政年份:2020
- 资助金额:
$ 12.89万 - 项目类别:
Alliance Grants
A graphene resonator by low-pressure dry transfer technique for highly sensitive chemical sensor
用于高灵敏化学传感器的低压干转移技术石墨烯谐振器
- 批准号:
17H03251 - 财政年份:2017
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultra-sensitive graphene-based immunoelectrochemical sensor for the quantitation of cardiacTroponin I
用于定量心肌肌钙蛋白 I 的超灵敏石墨烯免疫电化学传感器
- 批准号:
507431-2016 - 财政年份:2016
- 资助金额:
$ 12.89万 - 项目类别:
Engage Grants Program
Ultra-sensitive and specific graphene Immunosensors for in-situ mercury measurement in marine ecosystems
用于海洋生态系统中汞原位测量的超灵敏和特异性石墨烯免疫传感器
- 批准号:
1630195 - 财政年份:2016
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Development of Graphene-Coated Electrode and High-Sensitive Measurement System for Non-Invasive Autonomic Electroneurography
用于无创自主神经电图的石墨烯涂层电极和高灵敏度测量系统的开发
- 批准号:
16K01377 - 财政年份:2016
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fabrication of envionment-sensitive Pi-electron nano-porous materials using stacked-graphene edges and its properties
利用堆叠石墨烯边缘制备环境敏感的π电子纳米多孔材料及其性能
- 批准号:
15H03537 - 财政年份:2015
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)