Graded approach to the theory of division algebras, with applications to reduced K-theory
除法代数理论的分级方法及其在简化 K 理论中的应用
基本信息
- 批准号:EP/I007784/1
- 负责人:
- 金额:$ 4.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A division ring is a very elementary object. It is just a vector space with an associative product structure where each non- zero element has an inverse. The classical theorem of Wedderburn shows that division rings are basic building blocks of ring theory. Indeed starting from an arbitrary ring R with some mild finite condition, R/J(R) can be expressed as a product of matrices over division rings. One of the approaches for studying the K-theory of division algebras (which has direct application into the group structure of these objects) is to consider the kernel of the reduced norm map. This group is called the reduced Whitehead group, SK1, and the study of it is the subject of reduced K-theory (see the description of the project for more detail). Although the earliest work specifically on the reduced Whitehead group was published in mid 1940's by Tannaka and Nakayama (proving that SK1 of division rings over local fields are trivial) and in the 1950's by Artin's PhD student Wang (SK1 of division rings over global fields are trivial), a giant step forward was taken by V. Platonov in 1976 who constructed examples that this group is non-trivial. This answered several questions raised by luminaries such as Tits, Keneser, Serre and Borel in the setting of algebraic groups in negative and thus opened up new lines of research in division algebra theory and algebraic groups. Despite the passing of more than half a century, there is still a substantial interest in the reduced Whitehead group SK1, and vibrant activities around this subject mostly thanks to the new techniques from valuation theory and algebraic geometry. The recent work of the applicant with Adrian Wadsworth, by introducing the reduced Whitehead group in the setting of graded division algebras, and carrying over the complexity of calculations to this setting instead of directly working with a given division algebra, has not only shed new light into this group, but could recapture most of the results obtained in the literature in a systematic way which is much easier to follow. This would be clear if one tries to follow the arguments and methods employed previously to obtain results in this subject. This is even more apparent in the unitary case: even after the passage of some 30 years, there does not seem to have been any improvement in calculating SK1 in the unitary setting until the appearance of our work.
除法环是一个非常基本的物体。它只是一个具有结合积结构的向量空间,其中每个非零元素都有一个逆。经典的Wedderburn定理表明除环是环理论的基本组成部分。实际上,从具有温和有限条件的任意环R出发,R/J(R)可以表示为除法环上矩阵的乘积。研究除法代数的k理论(直接应用于这些对象的群结构)的方法之一是考虑约简范数映射的核。这个群体被称为简化Whitehead群,SK1,对它的研究是简化k理论的主题(详见项目描述)。虽然最早的关于约简Whitehead群的工作是在1940年代中期由Tannaka和Nakayama发表的(证明局部域上的除法环的SK1是平凡的),以及在1950年代由Artin的博士生Wang发表的(全局域上的除法环的SK1是平凡的),但V. Platonov在1976年迈出了巨大的一步,他构造了这个群是非平凡的例子。这回答了Tits、Keneser、Serre、Borel等著名学者在负代数群的设置中提出的几个问题,从而开辟了除法代数理论和代数群研究的新方向。尽管半个多世纪过去了,人们对缩减的怀特黑德群SK1仍然有很大的兴趣,围绕这一主题的活跃活动主要归功于估值理论和代数几何的新技术。申请人与Adrian Wadsworth最近的工作,通过在分级除法代数的设置中引入简化Whitehead群,并将计算的复杂性转移到该设置中,而不是直接使用给定的除法代数,不仅为该组提供了新的思路,而且可以以系统的方式重新获得文献中获得的大多数结果,这更容易遵循。如果一个人试图遵循先前在这一主题中用于获得结果的参数和方法,这一点就会很清楚。这在单一的情况下更加明显:即使在大约30年的过去之后,在单一设置中计算SK1似乎没有任何改进,直到我们的工作出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roozbeh Hazrat其他文献
The graded classification conjectures hold for various finite representations of Leavitt path algebras
分次分类猜想对莱维特路径代数的各种有限表示成立。
- DOI:
10.1016/j.jalgebra.2025.02.035 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:0.800
- 作者:
Wolfgang Bock;Roozbeh Hazrat;Alfilgen Sebandal - 通讯作者:
Alfilgen Sebandal
Recollements, sinks elimination and Leavitt path algebras
- DOI:
10.1007/s00013-016-0967-2 - 发表时间:
2016-09-06 - 期刊:
- 影响因子:0.500
- 作者:
Roozbeh Hazrat;Ju Huang - 通讯作者:
Ju Huang
Connections between abelian sandpile models and the K-theory of weighted Leavitt path algebras
- DOI:
10.1007/s40879-023-00613-4 - 发表时间:
2023-03-22 - 期刊:
- 影响因子:0.500
- 作者:
Gene Abrams;Roozbeh Hazrat - 通讯作者:
Roozbeh Hazrat
Unital aligned shift equivalence and the graded classification conjecture for Leavitt path algebras
- DOI:
10.1007/s00209-025-03748-0 - 发表时间:
2025-05-07 - 期刊:
- 影响因子:1.000
- 作者:
Kevin Aguyar Brix;Adam Dor-On;Roozbeh Hazrat;Efren Ruiz - 通讯作者:
Efren Ruiz
Distinguishing Leavitt algebras among Leavitt path algebras of finite graphs by the Serre property
- DOI:
10.1007/s00013-023-01880-z - 发表时间:
2023-07-26 - 期刊:
- 影响因子:0.500
- 作者:
Roozbeh Hazrat;Kulumani M. Rangaswamy - 通讯作者:
Kulumani M. Rangaswamy
Roozbeh Hazrat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roozbeh Hazrat', 18)}}的其他基金
K-theory of Fields and Azumaya Algebras
场的 K 理论和 Azumaya 代数
- 批准号:
EP/D03695X/1 - 财政年份:2006
- 资助金额:
$ 4.17万 - 项目类别:
Research Grant
相似国自然基金
量化 domain 的拓扑性质
- 批准号:11771310
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
- 批准号:50908133
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
- 批准号:50671047
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
- 批准号:30470298
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 4.17万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 4.17万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 4.17万 - 项目类别:
Continuing Grant
A high-dimensional approach to Ramsey Theory
拉姆齐理论的高维方法
- 批准号:
EP/Y006399/1 - 财政年份:2024
- 资助金额:
$ 4.17万 - 项目类别:
Research Grant
The Utility of Force in Contemporary Diplomacy: A Diachronic and Synchronic Approach to Middle-Range Theory.
当代外交中武力的运用:中层理论的历时和共时方法。
- 批准号:
23H00791 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Lace-expansion approach towards phase transitions, critical phenomena and constructive field theory
相变、临界现象和相长场论的花边展开方法
- 批准号:
23K03143 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
An Integrated Data Approach to Exploring Racial Differences in Reading Intervention Effectiveness
探索阅读干预效果中种族差异的综合数据方法
- 批准号:
10567796 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Proximal and ultimate mechanisms driving animal aggressive contests: a gene expression and game theory approach
驱动动物攻击性竞赛的近端和终极机制:基因表达和博弈论方法
- 批准号:
23K14229 - 财政年份:2023
- 资助金额:
$ 4.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists