Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
基本信息
- 批准号:EP/I011668/1
- 负责人:
- 金额:$ 84.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of spin-transfer torque at a magnetic domain wall continues to be one of the most vibrant areas of research in spintronics, motivated by the prospect of novel memory and logic systems and devices. At heart, the phenomenon is based on a fundamental law of nature: conservation of angular momentum. As an electron moves, as part of a flow of electrical current, through a magnetic domain wall, the direction of magnetisation around it will rotate from that in the first domain to that in the second. The magnetic moment on that electron, which arises from its spin angular momentum, will have to rotate accordingly. This results in a change of angular momentum on the electron by a single quantum unit. This change is compensated for by an equal change in the magnetisation of the metal that is carrying the current. The outcome is that if enough electrons pass through a domain wall, the 'electron wind' will push the wall along, just as a sail is blown along by wind in the atmosphere. The potential for using this effect to write and manipulate data represented magnetically in the next generation of nanoelectronics has lead to proposals for device architectures such as IBM's racetrack memory. At present, research in the field is overwhelmingly dominated by a single material and sample architecture: the lithographically patterned Permalloy nanowire. (Permalloy is a magnetically soft alloy of nickel and iron.) This is in spite of the fact that such nanostructures will probably not form the basis of any eventual device: the domain walls within them are too wide, too complex, and insufficiently rigid. Very high current densities, within an order of magnitude of the point of wire breakdown through electromigration, are needed to move them. From the point of view of basic research, it is clear that only a very restricted number of the possibilities for domain walls in nanowire systems has been investigated with any rigour. We will carry out a wide-ranging study of nanowires fabricated from multilayer films, drawing on years of experience in the preparation and study of such materials. Our attention will be focussed on two main classes of magnetic multilayer. The first class is the so-called synthetic antiferromagnet. Here two magnetic layers sandwich a thin metal spacer layer, through which they are coupled so that their magnetic moments prefer to lie in opposite directions. The lack of a net magnetic moment means that such structures are impervious to moderate magnetic fields and can be packed densely together on a chip without interacting, both attractive for spintronic technologies. Moreover, we have carried out preliminary micromagnetic simulations, which predict narrow, simple domain walls in such structures. The second class is multilayers in which the magnetisation lies perpendicular to the film plane. Recent results that we (and others) have obtained on these systems show that the efficiency of the spin-torque effect is roughly one hundredfold larger in these materials than in Permalloy - but that the defects in the materials lead to wall pinning effects that are larger by the same amount, so that huge current densities are still required. Here we will study the nature of the defects and so learn how to eliminate them, allowing such devices to operate with currents up to one hundred times smaller, leading to ten thousand times less power consumption. We will also investigate the control of the spin-torque effect using local electrical gates, making use of another recent discovery: the fact that in such thin perpendicular layers, a suitable structure incorporating an interface with a dielectric can give rise to electric fields acting as effective magnetic fields on moving electrons, giving rise to a new spin-torque effect through spin-orbit interactions. This will give control of domain wall pinning with a fine spatial and time resolution using voltages, giving the prospect of novel device architectures.
在新型存储器和逻辑系统及器件的前景的推动下,磁畴壁处的自旋转移力矩的研究仍然是自旋电子学中最有活力的研究领域之一。本质上,这种现象是基于一个基本的自然定律:角动量守恒。当电子作为电流的一部分移动通过磁畴壁时,其周围的磁化方向将从第一畴中的磁化方向旋转到第二畴中的磁化方向。该电子上的磁矩,由其自旋角动量产生,将不得不相应地旋转。这导致电子的角动量改变了一个量子单位。这种变化通过承载电流的金属的磁化强度的相等变化来补偿。结果是,如果足够多的电子穿过畴壁,“电子风”将推动畴壁沿着前进,就像风在大气中吹着帆沿着前进一样。利用这种效应来写入和操纵在下一代纳米电子学中以磁性表示的数据的潜力已经导致了诸如IBM的赛道存储器之类的设备架构的提议。目前,该领域的研究主要集中在单一材料和样品结构上:光刻图案化的坡莫合金纳米线。(坡莫合金是镍和铁的软磁合金。尽管这样的纳米结构可能不会形成任何最终器件的基础:它们内部的畴壁太宽,太复杂,刚性不够。移动它们需要非常高的电流密度,在通过电迁移的导线击穿点的数量级内。从基础研究的角度来看,很明显,在纳米线系统中,只有非常有限数量的畴壁可能性被严格研究过。我们将利用多年来在制备和研究这种材料方面的经验,对由多层膜制成的纳米线进行广泛的研究。我们的注意力将集中在两个主要类别的磁性多层膜。第一类是所谓的合成反铁磁体。在这里,两个磁性层夹着一个薄的金属间隔层,通过该金属间隔层,它们被耦合,使得它们的磁矩倾向于位于相反的方向。缺乏净磁矩意味着这种结构不受中等磁场的影响,并且可以在芯片上密集地组装在一起而不会相互作用,这对自旋电子技术都很有吸引力。此外,我们已经进行了初步的微磁模拟,预测狭窄,简单的畴壁在这样的结构。第二类是多层膜,其中磁化垂直于膜平面。我们(和其他人)在这些系统上获得的最新结果表明,这些材料中的自旋扭矩效应的效率大约是坡莫合金中的100倍,但材料中的缺陷导致壁钉扎效应也要大相同的量,因此仍然需要巨大的电流密度。在这里,我们将研究缺陷的性质,从而学习如何消除它们,使此类器件能够在电流小一百倍的情况下工作,从而使功耗降低一万倍。我们还将研究使用局部电子门控制自旋扭矩效应,利用另一个最近的发现:事实上,在这样薄的垂直层中,一个合适的结构,包括一个界面与电介质可以引起电场作为有效的磁场移动电子,通过自旋轨道相互作用引起一个新的自旋扭矩效应。这将给出使用电压以精细的空间和时间分辨率控制畴壁钉扎,给出新颖器件架构的前景。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer.
- DOI:10.1038/ncomms9957
- 发表时间:2015-12-08
- 期刊:
- 影响因子:16.6
- 作者:Benitez MJ;Hrabec A;Mihai AP;Moore TA;Burnell G;McGrouther D;Marrows CH;McVitie S
- 通讯作者:McVitie S
Current-driven domain wall motion in artificial magnetic domain structures
人工磁畴结构中电流驱动的畴壁运动
- DOI:10.3938/jkps.62.1534
- 发表时间:2013
- 期刊:
- 影响因子:0.6
- 作者:Hari M
- 通讯作者:Hari M
Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films
- DOI:10.1103/physrevb.90.020402
- 发表时间:2014-07-16
- 期刊:
- 影响因子:3.7
- 作者:Hrabec, A.;Porter, N. A.;Marrows, C. H.
- 通讯作者:Marrows, C. H.
DMI meter: Measuring the Dzyaloshinskii-Moriya interaction inversion in Pt/Co/Ir/Pt multilayers
DMI 计:测量 Pt/Co/Ir/Pt 多层膜中的 Dzyaloshinskii-Moriya 相互作用反演
- DOI:10.48550/arxiv.1402.5410
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Hrabec A
- 通讯作者:Hrabec A
Engineering Magnetic Domain-Wall Structure in Permalloy Nanowires
- DOI:10.1103/physrevapplied.3.034008
- 发表时间:2015-03-26
- 期刊:
- 影响因子:4.6
- 作者:Benitez, M. J.;Basith, M. A.;McVitie, S.
- 通讯作者:McVitie, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Marrows其他文献
Christopher Marrows的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Marrows', 18)}}的其他基金
Quantum spin Hall effect spintronics
量子自旋霍尔效应自旋电子学
- 批准号:
EP/T034343/1 - 财政年份:2021
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
- 批准号:
EP/T006803/1 - 财政年份:2020
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
- 批准号:
EP/M018504/1 - 财政年份:2015
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
- 批准号:
EP/L00285X/1 - 财政年份:2014
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Studies of Artificial Spin Ice at Brookhaven and Lawrence Berkeley National Laboratories
布鲁克海文和劳伦斯伯克利国家实验室的人造旋转冰研究
- 批准号:
EP/J021482/1 - 财政年份:2012
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
- 批准号:
EP/J000337/1 - 财政年份:2011
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Spin-Torque and Spin Polarisation in Epitaxial Magnetic Silicides
外延磁性硅化物中的自旋扭矩和自旋极化
- 批准号:
EP/J007110/1 - 财政年份:2011
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Spin-Polarised Tunnelling in Magnetic Nanostructures: A UK-China Collaboration
磁性纳米结构中的自旋极化隧道:中英合作
- 批准号:
EP/H001875/1 - 财政年份:2010
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
MATERIALS WORLD NETWORK The Magnetostructural Response in Heterostructured Systems: a US - UK Collaboration
MATERIALS WORLD NETWORK 异质结构系统中的磁结构响应:美国 - 英国合作
- 批准号:
EP/G065640/1 - 财政年份:2009
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Dynamics of current-driven interacting magnetic domain walls
电流驱动相互作用磁畴壁的动力学
- 批准号:
410120019 - 财政年份:2018
- 资助金额:
$ 84.76万 - 项目类别:
Research Grants
Observation of current-driven domain wall motions in ferromagnetic naowaires
铁磁纳米线中电流驱动畴壁运动的观察
- 批准号:
17H04795 - 财政年份:2017
- 资助金额:
$ 84.76万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
- 批准号:
EP/M018504/1 - 财政年份:2015
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
- 批准号:
EP/M019020/1 - 财政年份:2015
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Current driven domain wall motion of the reflux type magnetic wires with symmetric and asymmetric magnetic wire
对称和非对称回流型磁线的电流驱动畴壁运动
- 批准号:
25820127 - 财政年份:2013
- 资助金额:
$ 84.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Field-and Current-Driven Domain-Wall Dynamics in Microstructures
微结构中的场驱动和电流驱动的畴壁动力学
- 批准号:
1206404 - 财政年份:2012
- 资助金额:
$ 84.76万 - 项目类别:
Continuing Grant
Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
- 批准号:
EP/I013520/1 - 财政年份:2011
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
- 批准号:
EP/J000337/1 - 财政年份:2011
- 资助金额:
$ 84.76万 - 项目类别:
Research Grant
Influence of thermal gradients and spin currents on current driven domain wall motion
热梯度和自旋电流对电流驱动畴壁运动的影响
- 批准号:
22760015 - 财政年份:2010
- 资助金额:
$ 84.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Current driven domain wall motions in rare earth transition metal alloys and it application toward tera bit information storage
稀土过渡金属合金中电流驱动的畴壁运动及其在太比特信息存储中的应用
- 批准号:
22360122 - 财政年份:2010
- 资助金额:
$ 84.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




