Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
基本信息
- 批准号:EP/T006803/1
- 负责人:
- 金额:$ 103.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we will stabilise small circular magnetic domains called skyrmions in chiral synthetic antiferromagnetic multilayers and study their current-driven dynamics. The project is based on two recent breakthroughs by our groups: our being able to stabilise skyrmions as a topologically protected structure (making them resistant to annihilation) in a suitably designed single chiral perpendicularly magnetised layer, and being able to move coupled topological defects (domain walls) at low current density in a simple in-plane magnetised synthetic antiferromagnet.Whilst conventional skyrmions are interesting candidates for a variety of novel information storage and processing devices that offer the prospect of very low power operation, they are expected to move slowly at small sizes due to topological damping and are diverted at an angle to their current drive direction by the Magnus forces that lead to a skyrmion Hall effect. To realise their potential, we need to establish the optimal multilayer structure to support synthetic antiferromagnetic skyrmions that are small, highly mobile, and move in the direction of an electrical current drive. We need to find a reliable nucleation method to that can create synthetic antiferromagnetic skyrmions in a controlled manner for further study. We need to know how make synthetic antiferromagnetic skyrmions respond directly to spin current drives by balancing the Magnus forces on the two component skyrmions to reduce the skyrmion Hall angle to zero. Finally, we need to learn how to exploit the expected suppression of topological damping in order to move the synthetic antiferromagnetic skyrmions move at velocities far higher, and at smaller sizes, than for conventional skyrmions. In this project we will prepare chiral magnetic multilayers that support synthetic antiferromagnetic skyrmions, image the skyrmion structures, and fabricate nanoscale devices in which we can measure current-driven skyrmion dynamics. We will combine our expertise with synthetic antiferromagnet multilayers with our proven ability to induce strong Dzyaloshinskii-Moriya interactions at interfaces to combine two coupled skyrmions with opposite polarity and chirality into a synthetic antiferromagnetic skyrmion that can be stabilised at room temperature, with their structure and motion under field imaged using state-of-the-art microscopy techniques. Next, we will study the nucleation of synthetic antiferromagnetic skyrmions at randomly occurring and deliberately introduced defects due to the application of stimuli including pulses of magnetic field or electrical current. We will then prepare skyrmion racetracks along which synthetic antiferromagnetic skyrmions can be propelled using current-driven torques from this optimised multilayer stack and image the skyrmion motion at moderate current densities in order to measure the skyrmion Hall angle and find the conditions when it is zero. We will go on to increase the current densities to seek high velocity skyrmion motion exploiting the suppression of topological damping that arises between coupled topological defects in synthetic antiferromagnets.The results we shall obtain will not only lead to high impact publications and conference presentations by shedding light on the possibilities offered by this novel combination of materials, but also develop potentially valuable knowhow in the field of spintronics based on synthetic antiferromagnetic skyrmions for technological applications.
在这个项目中,我们将稳定手性合成反铁磁多层膜中被称为Skyrmions的小圆形磁区,并研究它们的电流驱动动力学。该项目是基于我们团队最近的两项突破:我们能够在适当设计的单一手性垂直磁化层中稳定Skyrmions作为拓扑保护结构(使其抗湮灭),以及能够在简单的面内磁化合成反铁磁体中以低电流密度移动耦合的拓扑缺陷(域壁)。尽管传统的Skyrmions是各种新型信息存储和处理设备的有趣候选者,这些设备提供了极低功率运行的前景,但由于拓扑阻尼,它们预计会在小尺寸下缓慢移动,并被导致Skrmion Hall效应的Magnus力转向与当前驱动方向的角度。为了实现它们的潜力,我们需要建立最佳的多层结构来支持合成的反铁磁天微子,这些天微子体积小,流动性强,并沿着电流驱动的方向移动。我们需要找到一种可靠的成核方法,能够以受控的方式产生合成的反铁磁天子,以便进一步研究。我们需要知道如何通过平衡两个分量天子上的马格努斯力来使合成的反铁磁天子直接响应于自旋电流驱动,从而将天米子的霍尔角减小到零。最后,我们需要学习如何利用预期的拓扑衰减抑制来移动合成的反铁磁天子,其速度比传统天子的速度高得多,尺寸也小得多。在这个项目中,我们将制备支持合成反铁磁性天米子的手性磁性多层膜,成像天米子结构,并制造纳米级器件,在其中我们可以测量电流驱动的天米子动力学。我们将把我们的专业知识与合成反铁磁性多层膜结合起来,并证明我们有能力在界面上诱导Dzyaloshinskii-Moriya相互作用,将两个极性和手性相反的耦合天米子结合成可以在室温下稳定的合成反铁磁性天米子,并使用最先进的显微镜技术在场下对它们的结构和运动进行成像。接下来,我们将研究由于施加包括磁场或电流脉冲在内的刺激,人工合成的反铁磁天微子在随机发生和故意引入的缺陷处的成核。然后,我们将准备Skyrmion跑道,利用这个优化的多层堆栈中的电流驱动力矩,可以沿着这些跑道推进合成的反铁磁性Skyrmion,并成像中等电流密度下的Skyrmion运动,以便测量Skyrmion霍尔角并找出它为零时的条件。我们将继续增加电流密度,利用在合成反铁磁中耦合的拓扑缺陷之间产生的拓扑阻尼的抑制来寻求高速天米子的运动。我们将获得的结果不仅将通过揭示这种新型材料组合提供的可能性而导致高影响力的出版物和会议报告,而且还将在基于合成反铁磁天子子的自旋电子学领域为技术应用开发潜在的有价值的技术。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On-axis sputtering fabrication of Tm3Fe5O12 film with perpendicular magnetic anisotropy
垂直磁各向异性Tm3Fe5O12薄膜的同轴溅射制备
- DOI:10.1016/j.tsf.2023.140176
- 发表时间:2024
- 期刊:
- 影响因子:2.1
- 作者:Agusutrisno M
- 通讯作者:Agusutrisno M
Breathing modes of skyrmion strings in a synthetic antiferromagnet multilayer
- DOI:10.1063/5.0142772
- 发表时间:2021-12
- 期刊:
- 影响因子:3.2
- 作者:Christopher E. A. Barker;E. Haltz;T. Moore;C. Marrows
- 通讯作者:Christopher E. A. Barker;E. Haltz;T. Moore;C. Marrows
Dynamics of bistable Néel domain walls under spin-orbit torque
- DOI:10.1103/physrevb.109.064406
- 发表时间:2024-02-06
- 期刊:
- 影响因子:3.7
- 作者:Haltz,Eloi;Franke,Kevin J. A.;Marrows,Christopher H.
- 通讯作者:Marrows,Christopher H.
Perspective on skyrmion spintronics
- DOI:10.1063/5.0072735
- 发表时间:2021-12-20
- 期刊:
- 影响因子:4
- 作者:Marrows, C. H.;Zeissler, K.
- 通讯作者:Zeissler, K.
Domain wall motion at low current density in a synthetic antiferromagnet nanowire
- DOI:10.1088/1361-6463/ace6b4
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Christopher E A Barker;S. Finizio;E. Haltz;S. Mayr;P. Shepley;T. Moore;G. Burnell;J. Raabe;C. Marrows
- 通讯作者:Christopher E A Barker;S. Finizio;E. Haltz;S. Mayr;P. Shepley;T. Moore;G. Burnell;J. Raabe;C. Marrows
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Marrows其他文献
Christopher Marrows的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Marrows', 18)}}的其他基金
Quantum spin Hall effect spintronics
量子自旋霍尔效应自旋电子学
- 批准号:
EP/T034343/1 - 财政年份:2021
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
- 批准号:
EP/M018504/1 - 财政年份:2015
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
- 批准号:
EP/L00285X/1 - 财政年份:2014
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Studies of Artificial Spin Ice at Brookhaven and Lawrence Berkeley National Laboratories
布鲁克海文和劳伦斯伯克利国家实验室的人造旋转冰研究
- 批准号:
EP/J021482/1 - 财政年份:2012
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
- 批准号:
EP/J000337/1 - 财政年份:2011
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Spin-Torque and Spin Polarisation in Epitaxial Magnetic Silicides
外延磁性硅化物中的自旋扭矩和自旋极化
- 批准号:
EP/J007110/1 - 财政年份:2011
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Spin-Polarised Tunnelling in Magnetic Nanostructures: A UK-China Collaboration
磁性纳米结构中的自旋极化隧道:中英合作
- 批准号:
EP/H001875/1 - 财政年份:2010
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
- 批准号:
EP/I011668/1 - 财政年份:2010
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
MATERIALS WORLD NETWORK The Magnetostructural Response in Heterostructured Systems: a US - UK Collaboration
MATERIALS WORLD NETWORK 异质结构系统中的磁结构响应:美国 - 英国合作
- 批准号:
EP/G065640/1 - 财政年份:2009
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
相似海外基金
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
- 批准号:
2205973 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Continuing Grant
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Probing Antiferromagnetic Spintronics with Nitrogen-Vacancy Centers in Diamond
职业:利用金刚石中的氮空位中心探测反铁磁自旋电子学
- 批准号:
2342569 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Continuing Grant
Antiferromagnetic Skyrmions in Multi-metal Nitride thin films
多金属氮化物薄膜中的反铁磁斯格明子
- 批准号:
22KJ1581 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Transport of the antiferromagnetic order
反铁磁序的传输
- 批准号:
23K13050 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Active antiferromagnetic materials for hosting hybrid magnonic functionalities
用于承载混合磁波函数的活性反铁磁材料
- 批准号:
2328787 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Standard Grant
Investigation of Structure-Property Relationships in Canted Antiferromagnetic Molecular Conductors by Fine Control of Intermolecular Interactions
通过分子间相互作用的精细控制研究倾斜反铁磁分子导体的结构-性能关系
- 批准号:
23K13722 - 财政年份:2023
- 资助金额:
$ 103.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
- 批准号:
EP/W006049/1 - 财政年份:2022
- 资助金额:
$ 103.93万 - 项目类别:
Research Grant
Investigation of frustrated antiferromagnetic compounds using ultrasonic velocity measurements
使用超声波速度测量研究受挫反铁磁化合物
- 批准号:
RGPIN-2018-04889 - 财政年份:2022
- 资助金额:
$ 103.93万 - 项目类别:
Discovery Grants Program - Individual
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
- 批准号:
2210510 - 财政年份:2022
- 资助金额:
$ 103.93万 - 项目类别:
Continuing Grant