Spin-Torque and Spin Polarisation in Epitaxial Magnetic Silicides
外延磁性硅化物中的自旋扭矩和自旋极化
基本信息
- 批准号:EP/J007110/1
- 负责人:
- 金额:$ 59.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Iron and silicon are two of the most abundant elements in the earth's crust. Nevertheless, the simplest chemical compound of these two elements, iron monosilicide (FeSi), possesses bizarre electronic and magnetic properties that have confounded researchers for decades. At low temperatures it is a non-magnetic semiconductor with a narrow gap. On warming, most materials become harder to magnetise: FeSi becomes easier, and it transforms into a heavy electron metal. Although known experimentally for over four decades, the proper theoretical description of this is still not settled. When cobalt is substituted for iron things get even more interesting. Theory predicts (and indirect experiments on bulk crystals seem to confirm) that each Co atom contributes one current carrying electron, and also one electron spin's worth of magnetism, suggesting a perfectly polarised magnetic semiconductor - and what is more, one based on Si. Indeed, we have recently been able to prepare thin films of this material on commercial silicon wafer that appear to be epilayers: single crystals where every atom is in register with the lattice defined by the substrate. Spin polarisation is the key figure of merit for all spintronic materials, with all spintronic effects growing as the polarisation increases. Having a high polarisation material that is silicon-based is therefore a very tantalising prospect. In the first part of our project we will confirm the nature of our thin films and their structural, magnetic, and electronic properties. We will also investigate a simpler and quicker way of forming films known as sputtering. We will then go on to make the first direct measurements of the spin polarisation of this remarkable material, and moreover, do so in the technologically vital thin film form on Si wafer.The magnetism is truly remarkable in another way, however. The crystal structure of this material is very unusual in that it lacks mirror symmetry, and so an obscure effect that is suppressed in almost every other magnetic material comes into play: the so-called Dzyaloshinskii-Moriya interaction. Instead of the usual uniform state in a ferromagnet, this term causes the spins to spiral around each other in a helix. This can be brought to a uniform saturated state in a large enough magnetic field, but on the way another largely forgotten piece of theoretical physics comes into play. There is an intermediate state formed from a lattice of magnetic vortices called skyrmions, a topological structure first invented to describe fields of pi-mesons in the 1960s. Last year it was shown (using bulk crystals of a related compound, manganese monosilicide) that because of this special topology, these swirling magnetic structures can be set into motion by a current flowing through the crystal at a current density around one million times smaller than that needed to move a vortex in a conventional magnetic material. We shall seek these magnetic skyrmion objects in our silicide wafer samples and measure the current density needed to move them. Unfortunately, this material is only magnetic at temperatures a few tens of degrees above absolute zero, and all magnetic properties are lost well before room temperature is reached. Nevertheless, replacing silicon with its neighbour in the periodic table, germanium, can also transform iron silicide into a helimagnetic metal, with complete replacement preserving this structure up to a temperature a few degrees above zero Celsius. We shall complete our project by doping this material with cobalt and see if the critical temperature can be pushed above room temperature to technologically useful values.
铁和硅是地壳中含量最丰富的两种元素。尽管如此,这两种元素最简单的化合物--一硅化铁(FeSi)却具有奇异的电子和磁性,这让研究人员困惑了几十年。在低温下,它是一种具有窄隙的非磁性半导体。随着温度的升高,大多数材料变得更难磁化:FeSi变得更容易磁化,并转化为重电子金属。尽管四十多年来实验上已经知道了这一点,但对此的正确理论描述仍然没有确定。当钴取代铁时,事情变得更加有趣。理论预测(以及对大块晶体的间接实验似乎证实)每个Co原子贡献一个载流电子,以及一个电子自旋的磁性,这表明一个完美极化的磁性半导体-而且,一个基于Si的磁性半导体。事实上,我们最近已经能够在商业硅片上制备这种材料的薄膜,这些薄膜看起来像外延层:每个原子都与衬底定义的晶格对齐的单晶。自旋极化是所有自旋电子材料的关键品质因数,所有自旋电子效应随着极化的增加而增加。因此,具有硅基的高极化材料是非常诱人的前景。在我们项目的第一部分,我们将确认我们的薄膜的性质及其结构,磁性和电子特性。我们还将研究一种更简单、更快速的成膜方法,即溅射法。接下来,我们将对这种非凡材料的自旋极化进行首次直接测量,而且是在硅晶片上以技术上至关重要的薄膜形式进行测量。然而,磁性确实以另一种方式引人注目。这种材料的晶体结构非常不寻常,因为它缺乏镜像对称性,因此几乎所有其他磁性材料都抑制了一种模糊的效应:所谓的Dzyaloshinskiii-Moriya相互作用。与铁磁体通常的均匀状态不同,这一项导致自旋以螺旋形相互缠绕。这可以在足够大的磁场中达到均匀的饱和状态,但在此过程中,另一个基本上被遗忘的理论物理学开始发挥作用。有一种由磁涡旋晶格形成的中间态称为skyrmions,这是一种拓扑结构,最初是在20世纪60年代发明的,用于描述π介子场。去年的研究表明(使用相关化合物一硅化锰的大块晶体),由于这种特殊的拓扑结构,这些漩涡状的磁性结构可以通过流过晶体的电流来启动,电流密度比传统磁性材料中移动漩涡所需的电流密度小一百万倍。我们将在硅化物晶片样品中寻找这些磁性Skyrmion物体,并测量移动它们所需的电流密度。不幸的是,这种材料只有在绝对零度以上几十度的温度下才具有磁性,并且在达到室温之前,所有的磁性都消失了。然而,用元素周期表中的邻居锗取代硅,也可以将硅化铁转化为螺旋金属,完全取代可以将这种结构保持在零摄氏度以上几度的温度。我们将通过在这种材料中掺杂钴来完成我们的项目,看看临界温度是否可以被推到室温以上,达到技术上有用的值。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DMI meter: Measuring the Dzyaloshinskii-Moriya interaction inversion in Pt/Co/Ir/Pt multilayers
DMI 计:测量 Pt/Co/Ir/Pt 多层膜中的 Dzyaloshinskii-Moriya 相互作用反演
- DOI:10.48550/arxiv.1402.5410
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Hrabec A
- 通讯作者:Hrabec A
Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer.
- DOI:10.1038/ncomms9957
- 发表时间:2015-12-08
- 期刊:
- 影响因子:16.6
- 作者:Benitez MJ;Hrabec A;Mihai AP;Moore TA;Burnell G;McGrouther D;Marrows CH;McVitie S
- 通讯作者:McVitie S
Dynamics of skyrmionic states in confined helimagnetic nanostructures
- DOI:10.1103/physrevb.95.014433
- 发表时间:2017-01-30
- 期刊:
- 影响因子:3.7
- 作者:Beg, Marijan;Albert, Maximilian;Fangohr, Hans
- 通讯作者:Fangohr, Hans
Scattering mechanisms in textured FeGe thin films: Magnetoresistance and the anomalous Hall effect
- DOI:10.1103/physrevb.90.024403
- 发表时间:2014-07-09
- 期刊:
- 影响因子:3.7
- 作者:Porter, N. A.;Gartside, J. C.;Marrows, C. H.
- 通讯作者:Marrows, C. H.
Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films
- DOI:10.1103/physrevb.90.020402
- 发表时间:2014-07-16
- 期刊:
- 影响因子:3.7
- 作者:Hrabec, A.;Porter, N. A.;Marrows, C. H.
- 通讯作者:Marrows, C. H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Marrows其他文献
Christopher Marrows的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Marrows', 18)}}的其他基金
Quantum spin Hall effect spintronics
量子自旋霍尔效应自旋电子学
- 批准号:
EP/T034343/1 - 财政年份:2021
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
Synthetic Antiferromagnetic Skyrmions
合成反铁磁斯格明子
- 批准号:
EP/T006803/1 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
Current-driven domain wall motion and magnetomemristance in FeRh-based nanostructures
FeRh 基纳米结构中电流驱动的畴壁运动和磁阻
- 批准号:
EP/M018504/1 - 财政年份:2015
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
- 批准号:
EP/L00285X/1 - 财政年份:2014
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
Studies of Artificial Spin Ice at Brookhaven and Lawrence Berkeley National Laboratories
布鲁克海文和劳伦斯伯克利国家实验室的人造旋转冰研究
- 批准号:
EP/J021482/1 - 财政年份:2012
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
UK-Japanese Collaboration on Current-Driven Domain Wall Dynamics
英日在电流驱动畴壁动力学方面的合作
- 批准号:
EP/J000337/1 - 财政年份:2011
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
Spin-Polarised Tunnelling in Magnetic Nanostructures: A UK-China Collaboration
磁性纳米结构中的自旋极化隧道:中英合作
- 批准号:
EP/H001875/1 - 财政年份:2010
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
Current-Driven Domain Wall Motion in Multilayer Nanowires
多层纳米线中电流驱动的畴壁运动
- 批准号:
EP/I011668/1 - 财政年份:2010
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
MATERIALS WORLD NETWORK The Magnetostructural Response in Heterostructured Systems: a US - UK Collaboration
MATERIALS WORLD NETWORK 异质结构系统中的磁结构响应:美国 - 英国合作
- 批准号:
EP/G065640/1 - 财政年份:2009
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
相似国自然基金
铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
- 批准号:11574129
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
If a spin could torque: quantum force sensing with levitated nanodiamonds
如果自旋可以产生扭矩:利用悬浮纳米金刚石进行量子力传感
- 批准号:
DP240100942 - 财政年份:2024
- 资助金额:
$ 59.6万 - 项目类别:
Discovery Projects
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
- 批准号:
EP/X036715/1 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Research Grant
SBIR Phase II: An innovative calibration software to suppress torque ripple and improve performance of electric motors.
SBIR Phase II:一款创新的校准软件,可抑制扭矩脉动并提高电动机的性能。
- 批准号:
2233023 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Cooperative Agreement
The torque around the axial direction of rotating detoantion engines
旋转爆震发动机绕轴向的扭矩
- 批准号:
23KJ1084 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
- 批准号:
23H00232 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Control of current-induced Rashba torque
电流感应 Rashba 扭矩的控制
- 批准号:
22KJ2677 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Next-Generation Safe and Dexterous Robot Hands using High-Torque Direct-Drive Actuation
采用高扭矩直驱驱动的下一代安全灵巧的机器人手
- 批准号:
2221051 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Standard Grant
Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
- 批准号:
2236159 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Standard Grant
torque ripple reduction through design and control
通过设计和控制减少扭矩脉动
- 批准号:
2878188 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Studentship
Torque-Controlled Humanoid Robot
扭矩控制人形机器人
- 批准号:
505888453 - 财政年份:2023
- 资助金额:
$ 59.6万 - 项目类别:
Major Research Instrumentation














{{item.name}}会员




