Workshops on the frontiers of Nevanlinna theory
Nevanlinna 理论前沿研讨会
基本信息
- 批准号:EP/I013334/1
- 负责人:
- 金额:$ 3.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex analysis is the extension of calculus to the complex numbers. Meromorphic functions are functions that are differentiable throughout the complex plane except possibly at isolated points where the functions may have the simplest kind of singularities, called poles. Such functions arise naturally in many theoretical and practical problems. Britain has a strong tradition of research in function theory. Among its particular strengths are Nevanlinna's value distribution theory for meromorphic functions of a single variable, as well as the study of dynamical systems. However, during the last couple of decades there have been major breakthroughs in Nevanlinna theory and related areas which appear to have had little impact in Britain to date. Funds are sought to run a series of small workshops that are aimed at engaging the UK community with some of these important lines of research. The emphasis of the workshops will be on exploring collaborations and the number of talks will be restricted accordingly.Below are brief descriptions of each proposed workshop.W1. Frontiers of Nevanlinna theoryThis will be a general introduction to the main themes.W2. Nevanlinna theory and Diophantine approximationThis workshop will explore the remarkable formal connection between Nevanlinna theory and an area of number theory. Participants will be invited who work on this connection as well as those working in pure Nevanlinna theory or Diophantine approximation.W3. Function theory and dynamical systems over p-adic spacesFor each prime number p, the p-adic numbers are a field of numbers that contain the rational numbers (fractions) but are quite different in nature to the real numbers. They arise naturally in many problems in number theory. One can also construct analogues of the complex numbers in the p-adic setting and develop large parts of complex analysis, including Nevanlinna theory. Recently there has been a lot of interest in the behaviour of dynamical systems in the p-adic setting. Classical Nevanlinna theory has been a useful tool in dynamical systems over the (genuine) complex numbers. This workshop will explore this connection over the p-adics.W4. Function theory of differential and difference equationsThere are several important conjectures concerning differential and difference equations in the complex domain for which Nevanlinna theory would be a useful tool.
复分析是微积分在复数上的推广。亚纯函数是在复平面上可微的函数,除了可能在孤立点处,函数可能具有最简单的奇点,称为极点。在许多理论和实际问题中,自然会出现这种功能。英国在函数论研究方面有着悠久的传统。其特别的优势是Nevanlinna的值分布理论的亚纯函数的一个单一的变量,以及研究的动力系统。然而,在过去的几十年里,内万林纳理论和相关领域取得了重大突破,迄今为止在英国几乎没有影响。寻求资金来运行一系列的小型研讨会,旨在使英国社区参与其中一些重要的研究领域。工作坊的重点将放在探讨合作上,讲座的数量也会相应地有所限制。以下是每个拟议工作坊的简要描述。Nevanlinna理论的前沿这将是对主要主题的一般介绍。Nevanlinna理论和丢番图近似这个研讨会将探讨Nevanlinna理论和数论领域之间显着的正式联系。与会者将被邀请谁的工作在这个连接以及那些工作在纯Nevanlinna理论或丢番图近似。p-adic空间上的函数论和动力系统对于每个素数p,p-adic数是包含有理数(分数)但在性质上与真实的数完全不同的数域。它们在数论中的许多问题中自然出现。人们也可以在p-adic设置中构造复数的类似物,并开发复分析的大部分,包括Nevanlinna理论。最近有很多的兴趣在动力系统的行为在p-adic设置。经典Nevanlinna理论是研究(真)复数上动力系统的一个有用工具。本研讨会将探讨p-adics. W 4上的这种联系。微分和差分方程的函数理论有几个重要的理论,涉及微分和差分方程在复杂的区域,Nevanlinna理论将是一个有用的工具。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proceedings of the Workshop on Complex Analysis and its Applications to Differential and Functional Equations: in the honour of Ilpo Laine's 70th birthday
复分析及其在微分和泛函方程中的应用研讨会论文集:纪念 Ilpo Laine 70 岁生日
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Halburd R
- 通讯作者:Halburd R
All admissible meromorphic solutions of Hayman's equation
- DOI:10.1093/imrn/rnu218
- 发表时间:2014-11
- 期刊:
- 影响因子:1
- 作者:R. Halburd;Jun Wang
- 通讯作者:R. Halburd;Jun Wang
Value distribution and linear operators
值分布和线性运算符
- DOI:10.48550/arxiv.1309.3333
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Halburd R
- 通讯作者:Halburd R
Holomorphic curves with shift-invariant hyperplane preimages
- DOI:10.1090/s0002-9947-2014-05949-7
- 发表时间:2009-03
- 期刊:
- 影响因子:1.3
- 作者:R. Halburd;R. Korhonen;K. Tohge
- 通讯作者:R. Halburd;R. Korhonen;K. Tohge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Halburd其他文献
Rodney Halburd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodney Halburd', 18)}}的其他基金
Applications of Nevanlinna theory to differential and difference equations
Nevanlinna 理论在微分方程和差分方程中的应用
- 批准号:
EP/K041266/1 - 财政年份:2013
- 资助金额:
$ 3.09万 - 项目类别:
Research Grant
Integrability tests for discrete and differential equations
离散方程和微分方程的可积性检验
- 批准号:
EP/C54319X/2 - 财政年份:2007
- 资助金额:
$ 3.09万 - 项目类别:
Fellowship
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Frontiers of Mathematics in China
- 批准号:11024802
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:专项基金项目
相似海外基金
New Frontiers for Anonymous Authentication
匿名身份验证的新领域
- 批准号:
DE240100282 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Discovery Early Career Researcher Award
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
- 批准号:
2415310 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Standard Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
- 批准号:
DE240100674 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Discovery Early Career Researcher Award
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
- 批准号:
2347894 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Standard Grant
Conference: USA-UK-China-Israel Workshop on Frontiers in Ecology and Evolution of Infectious Diseases
会议:美国-英国-中国-以色列生态学和传染病进化前沿研讨会
- 批准号:
2406564 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Standard Grant
Mapping the Frontiers of Private Property in Australia
绘制澳大利亚私有财产的边界
- 批准号:
DP240100395 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Discovery Projects
Frontiers in gravitational wave astronomy (FRoGW)
引力波天文学前沿(FRoGW)
- 批准号:
EP/Y023706/1 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Fellowship
Conference: FRONTIERS OF ENGINEERING (2024 US FOE, 2024 China-America FOE, and 2025 German-American FOE)
会议:工程前沿(2024年美国之敌、2024年中美之敌、2025年德美之敌)
- 批准号:
2405026 - 财政年份:2024
- 资助金额:
$ 3.09万 - 项目类别:
Standard Grant














{{item.name}}会员




