Integrability tests for discrete and differential equations
离散方程和微分方程的可积性检验
基本信息
- 批准号:EP/C54319X/2
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential and difference equations arise in all areas of the mathematical sciences from population dynamics to relativity to the most abstract areas of pure mathematics. When one is considers a particular equation it is natural to ask whether this equation can be solved explicitly or at least whether we can characterise the solutions in a nice way. In other words, is the equation integrable? This question lies at the heart of much of this project.A large part of the project is directed towards the use of well-defined properties that are correlated with integrability and the development of powerful tests for these properties. For difference and discrete equations, three such properties will be used. One property involves studying difference equations in the complex plane. Another property involves studying how complicated rational functions (ratios of polynomials) get when iterated by a discrete equation. The final property involves looking at rational numbers that are generated by discrete equations and considering how quickly their numerators and denominates grow under iteration. This project is not only aimed at providing useful tests for applied mathematicians and scientists to apply to real world equations, but it is also aimed at providing a rigorous basis for part of the theory.For ordinary differential equations (ODEs) it has long been known that equations whose solutions have a a very simple singularity structure are integrable. Another main aim of this research is to understand the types of (movable) singularities that solutions of classes of ODEs can develop. This is aimed at a better understanding of what makes certain integrable equations special and also towards developing tests to determine when an equation has a global singularity structure that is neither trivial nor very bad so the equation might be integrable. This work has also led to methods for detecting special classes of solutions in otherwise non-integrable equations.
微分方程和差分方程出现在数学科学的所有领域,从人口动力学到相对论,再到最抽象的纯数学领域。当人们考虑一个特定的方程时,很自然地会问这个方程是否可以显式地求解,或者至少我们是否可以用一种很好的方式来求解。换句话说,这个方程是可积的吗?这个问题是这个项目的核心。这个项目的很大一部分是针对使用与可积性相关的定义良好的属性,以及为这些属性开发强大的测试。对于差分和离散方程,将使用三个这样的性质。一个属性涉及研究复平面中的差分方程。另一个性质涉及研究当通过离散方程迭代时,有理函数(多项式的比率)有多复杂。最后一个性质涉及到研究由离散方程生成的有理数,并考虑它们的分子和命名在迭代下增长的速度。该项目不仅旨在为应用数学家和科学家提供有用的测试,以应用于真实的世界方程,而且旨在为部分理论提供严格的基础。对于常微分方程(ODE),人们早就知道解具有非常简单的奇异结构的方程是可积的。本研究的另一个主要目的是了解的类型(可移动)奇点的解决方案的常微分方程类可以开发。这是为了更好地理解是什么使某些可积方程的特殊性,也是为了开发测试,以确定当一个方程具有全局奇异结构,既不是平凡的,也不是非常糟糕,所以方程可能是可积的。这项工作也导致了方法检测特殊类的解决方案,否则不可积方程。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holomorphic curves with shift-invariant hyperplane preimages
- DOI:10.1090/s0002-9947-2014-05949-7
- 发表时间:2009-03
- 期刊:
- 影响因子:1.3
- 作者:R. Halburd;R. Korhonen;K. Tohge
- 通讯作者:R. Halburd;R. Korhonen;K. Tohge
Rational ODEs with Movable Algebraic Singularities
具有可动代数奇点的有理常微分方程
- DOI:10.1111/j.1467-9590.2009.00445.x
- 发表时间:2009
- 期刊:
- 影响因子:2.7
- 作者:Filipuk G
- 通讯作者:Filipuk G
Movable Singularities of Equations of Liénard Type
Liénard 型方程的动奇异性
- DOI:10.1007/bf03321744
- 发表时间:2009
- 期刊:
- 影响因子:2.1
- 作者:Filipuk G
- 通讯作者:Filipuk G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Halburd其他文献
Rodney Halburd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodney Halburd', 18)}}的其他基金
Applications of Nevanlinna theory to differential and difference equations
Nevanlinna 理论在微分方程和差分方程中的应用
- 批准号:
EP/K041266/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
Workshops on the frontiers of Nevanlinna theory
Nevanlinna 理论前沿研讨会
- 批准号:
EP/I013334/1 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grant
相似国自然基金
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Support for Conferences and Scientific Meetings R13
对会议和科学会议的支持 R13
- 批准号:
9763034 - 财政年份:2019
- 资助金额:
-- - 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
- 批准号:
8919947 - 财政年份:2014
- 资助金额:
-- - 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
- 批准号:
8822562 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Methods for Post Marketing Surveillance and Comparative Effectiveness Research
上市后监测和比较效果研究的方法
- 批准号:
7786681 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Visualization and simulation of rock specimen fracture processes using micromechanics tests
使用微观力学测试对岩石样本断裂过程进行可视化和模拟
- 批准号:
15560699 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
MCMC methods for regression data with correlated multivariate discrete response/interval hypothesis tests for model validation
用于回归数据的 MCMC 方法以及用于模型验证的相关多元离散响应/区间假设检验
- 批准号:
89858-1996 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
MCMC methods for regression data with correlated multivariate discrete response/interval hypothesis tests for model validation
用于回归数据的 MCMC 方法以及用于模型验证的相关多元离散响应/区间假设检验
- 批准号:
89858-1996 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
MCMC methods for regression data with correlated multivariate discrete response/interval hypothesis tests for model validation
用于回归数据的 MCMC 方法以及用于模型验证的相关多元离散响应/区间假设检验
- 批准号:
89858-1996 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Measurement and Evaluation of English Communicative Competence---Discrete-point vs Integrative Tests & Integrative vs.Analytical Evaluation----
英语交际能力的测量与评价——离散点测试与综合测试
- 批准号:
08680285 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
MCMC methods for regression data with correlated multivariate discrete response/interval hypothesis tests for model validation
用于回归数据的 MCMC 方法以及用于模型验证的相关多元离散响应/区间假设检验
- 批准号:
89858-1996 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




